Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

ALGEBRA JA GEOMEETRIA (0)

1 Hindamata
Punktid

Lõik failist

Vasakule Paremale
ALGEBRA JA GEOMEETRIA #1 ALGEBRA JA GEOMEETRIA #2 ALGEBRA JA GEOMEETRIA #3 ALGEBRA JA GEOMEETRIA #4 ALGEBRA JA GEOMEETRIA #5 ALGEBRA JA GEOMEETRIA #6 ALGEBRA JA GEOMEETRIA #7 ALGEBRA JA GEOMEETRIA #8 ALGEBRA JA GEOMEETRIA #9 ALGEBRA JA GEOMEETRIA #10 ALGEBRA JA GEOMEETRIA #11 ALGEBRA JA GEOMEETRIA #12 ALGEBRA JA GEOMEETRIA #13 ALGEBRA JA GEOMEETRIA #14 ALGEBRA JA GEOMEETRIA #15 ALGEBRA JA GEOMEETRIA #16 ALGEBRA JA GEOMEETRIA #17 ALGEBRA JA GEOMEETRIA #18 ALGEBRA JA GEOMEETRIA #19 ALGEBRA JA GEOMEETRIA #20 ALGEBRA JA GEOMEETRIA #21 ALGEBRA JA GEOMEETRIA #22 ALGEBRA JA GEOMEETRIA #23 ALGEBRA JA GEOMEETRIA #24 ALGEBRA JA GEOMEETRIA #25 ALGEBRA JA GEOMEETRIA #26 ALGEBRA JA GEOMEETRIA #27 ALGEBRA JA GEOMEETRIA #28 ALGEBRA JA GEOMEETRIA #29 ALGEBRA JA GEOMEETRIA #30 ALGEBRA JA GEOMEETRIA #31 ALGEBRA JA GEOMEETRIA #32 ALGEBRA JA GEOMEETRIA #33 ALGEBRA JA GEOMEETRIA #34 ALGEBRA JA GEOMEETRIA #35 ALGEBRA JA GEOMEETRIA #36 ALGEBRA JA GEOMEETRIA #37 ALGEBRA JA GEOMEETRIA #38 ALGEBRA JA GEOMEETRIA #39 ALGEBRA JA GEOMEETRIA #40 ALGEBRA JA GEOMEETRIA #41 ALGEBRA JA GEOMEETRIA #42 ALGEBRA JA GEOMEETRIA #43 ALGEBRA JA GEOMEETRIA #44 ALGEBRA JA GEOMEETRIA #45 ALGEBRA JA GEOMEETRIA #46 ALGEBRA JA GEOMEETRIA #47 ALGEBRA JA GEOMEETRIA #48
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 48 lehte Lehekülgede arv dokumendis
Aeg2015-09-15 Kuupäev, millal dokument üles laeti
Allalaadimisi 19 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor aKaruPuhh Õppematerjali autor

Sarnased õppematerjalid

thumbnail
48
pdf

Maatriksid

¨ TARTU ULIKOOL MATEMAATIKA-INFORMAATIKA TEADUSKOND Puhta matemaatika instituut Aivo Parring ALGEBRA JA GEOMEETRIA Tartu 2005 SISSEJUHATUS K¨aesolevate m¨arkmete j¨arele tekkis vajadus 2000/01 ~oppeaastal, kui muudeti tollase matemaatikateaduskonna ~oppekavasid. Selle tulemusena l¨ ulitati ~oppekavasse algebra ja anal¨ uu¨tilise geomeetria sissejuhatavaid pea- t¨ukke k¨asitlev aine "Algebra ja geomeetria". Vahepeal on elu edasi l¨ainud. Matemaatikateaduskonnast on juba saanud matemaatika-informaatikatea- duskond. Nelja-aastasest bakalaureuse ~oppest on saamas kolmeaastane bakalaureuse ~ope. Uue ~oppekava kohaselt on selle ~oppeaine maht n¨ uu ¨d 40 tundi loenguid ja sama palju harjutusi. Iseseisvaks t¨o¨ oks on ette n¨ahtud 80 tundi

Algebra ja geomeetria
thumbnail
104
pdf

Konspekt

sid. Siis (A + B)(A - B) = A2 - B 2 - [A, B] T~ oestus. T~oepoolest (A + B)(A - B) = A(A - B) + B(A - B) = AA - AB + BA - BB = A2 - B 2 - [A, B] Seega (A + B)(A - B) = A2 - B 2 [A, B] = 0 mis u ¨tleb, et ruutude vahe valemit v~oib kasutada siis ja ainult siis, kui maatriksid A ja B kommuteeruvad. 3.7 Maatrikskorrutise omadusi: Poissoni-Lie algebra Teoreem 9. Maatriksid A, B, C olgu u ¨hesuguse j¨ arguga ruutmaat- riksid ning R. Siis 1) [A, B] = -[B, A] (antis¨ ummeetria) II. Maatriksarvutus 11 2) [A ± B, C] = [A, C] ± [B, C] (aditiivsus) 3) [A, B] = [A, B] = [A, B] (homogeensus)

Lineaaralgebra
thumbnail
28
pdf

Lineaaralgebra ja analüütiline geomeetria konspekt

Eksami kordamisküsimused Lineaaralgebra ja analüütiline geomeetria (2015- 2016 aasta sügis) Ristkoordinaadid. Kui ruumis on antud ristkoordinaadisüsteem, siis ruumi iga punkt P on üheselt määrastud ristkoordinaatidega x, y, z, kus x on punkti P ristprojektsioon abstsissteljele, y on punkti P ristprojektsioon ordinaatteljele ja z on punkti P ristprojektsioon aplikaateljele. Kirjutame P(x, y, z). Kahe punkti vaheline kaugus. Kui P1(x1, y1, z1), P2(x2, y2, z2) on ruumi punktid, siis kaugus d punktide P1 ja P2 vahel on määratud valemiga

Algebra ja analüütiline geomeetria
thumbnail
14
odt

DV II KT vastused

DV II teooriatöö kordamisküsimused 1. Kõrgemat järku harilik DV. Lahendi olemasolu, ühesuse tingimused, üldlahend, erilahend. V: Kõrgemat järku harilikud diferentsiaalvõrrandid: Üldkuju: F(x, y, y', y'', ..., y(n)) = 0, kus x on sõltumatu muutuja, y = y(x) on otsitav funktsioon ja y', ..., y (n) on otsitava funktsiooni tuletised. Normaalkuju: y(n) = f(x, y, y', ..., y(n-1)) (1) Eksaktne lahend: x0, y0, y01, ..., y0n-1, Algtingimused: nii mitu konstanti kui suur on DV järku konstant. {y(x0) = y0 {y'(x0) = y0(1) {... (2) (n-1) (n-1)

Dif.võrrandid
thumbnail
8
docx

Dif 2. kollokvium

n Kõrgemat järku harilik DV-Üldkuju(F,x,y,y’,y’’,.., y ),kus x-sõltumatu muutuja,y=y(x) otsitav funkt ja y’.. ' n x , y , y , .. y on otsitava fun tuletised.Lahendiks y=y(x)>y=y(x,C1,C2,..,Cn). Normkuju: y =f ¿ , (n ) y (n−1) ¿(1) . Algtingimused y( x 0 ¿= y 0 ; y( x 0 ¿= y 0 ' ; y n−1 ( x 0 ) = y 0n�

Dif.võrrandid
thumbnail
25
doc

Algebra ja geomeetria kordamine

MAATRIKS: Maatriks ­ nimetatakse ümarsulgudesse paigutatud reaalarvude tabelit, milles on eristatavad read ja veerud. Maatriksi mõõtmed ­ Maatriksit, milles on m rida ja n veergu nimetatakse täpsemalt (m,n)- maatriksiks ning arvupaari (m,n) selle maatriksi mõõtmeteks. Maatriksi järk ­ Omadus, mis esineb ainult ruutmaatriksil: Näiteks Mat(n,n) nim. n-järku maatriksiks. Maatriksi elemendid ­nimetatakse reaalarve, milledest maatriks koosneb. Maatriksi ja maatriksite hulga tähistused ­ Maatrikseid tähistatakse tavaliselt suurte ladina tähtedega: A, B,....X, Y, Z. Maatriksite elemente tähistatakse vastavate väikeste ladina tähtedega, mis võivad olla varustatud ka indeksitega: a, b, c, jne. Kõigi (kõikvõimalike mõõtmetega) maatriksite hulka tähistame edaspidi Mat abil ning kõigi (m, n)-maatriksite hulka tähistame edaspidi Mat(m, n) abil. Ruutmaatriks ­maatriks, mille ridade arv on võrdne veergude arvuga, s.t. m=n Ristkülikmaatriks ­maatriks, mille ridade arv

Algebra ja geomeetria
thumbnail
26
docx

Lineaaralgebra eksami kordamisküsimused vastused

1. Ristkoordinaadid- kui ruumis on antud ristkordinaadisüsteem, siis ruumi iga punkt P on üheselt määratud ristkordinaatidega x,y,z, kus x on punkti P ristprojektsioon absissteljele, y on punkti P ristprojektsioon ordinaattelele ja z on punkti P ristprojektsioon aplikaattelele P(x,y,z) 2. Kahe punkti vaheline kaugus- Kui P1(x1,y1,z1), P2(x2,y2,z2) on ruumi punktid siis kaugus d punktide P1 ja P2 vahel on määratud valemiga √ 2 2 d= ( x 2−x 1 ) + ( y 2− y 1 ) + ( z 2 + z 1) 2 3. Vektori mõiste-Vektor on suunatud lõik millel on kindel algus- ja lõpp-punkt. 4. Nullvektor-Vektorit, mille pikkus on null, nimetatakse nullvektoriks ja tähistatakse sümboliga . Nullvektori suund on määramata. 5. Ühikvektor- Kui vektori pikkus on 1 6. vektorite liitmine-rööpkülikureegel: Vektorite a ja b summaks nimetatakse niisugust vektorit c, mis väljub nend

Matemaatiline analüüs 1
thumbnail
24
rtf

Lineaaralgebra eksam

1. Kompleksarv kui reaalarvude paar. Tehted kompleksarvudega. Tehete omadused. Kompleksarvu algebraline kuju. Tuletatavad tehted ja nende omadused. Kompleksarvuks nimetatakse reaalarvude paari (x,y). C = {(x;y) | x, y R} Tehted kompleksarvudega: z1 = (x1; y1) C; z2 = (x2; y2) C 1. liitmine: z1 + z2 = (x1 + x2; y1 + y2) 2. korrutamine: z1 * z2 = (x1x2 - y1y2; x1y2 + x2y1) Kompleksarvudega tehete omadused 1. liitmine on kommutatiivne, st z1 + z2 = z2 + z1 z1, z2 C korral 2. liitmine on assotsiatiivne, st (z1 + z2) + z3 = z1 + (z2 + z3) z1, z2, z3 C korral 3. liitmise suhtes leidub nullelement (reaalarv 0, 0 + z = z + 0 = z z C korral), st leidub C, nii et z + = + z = z z korral; = (0; 0) = 0 4. igal kompleksarvul z = (x; y) = x + yi leidub (liitmise suhtes) vastandarv, st selline arv w C, et z + w = w + z = 0; w = -z 5. korrutamine on kommutatiivne, st z1z2 = z2z1 z1, z2 C korral 6. korrutamine on assotsiatiivne, st (z1z2)z3 = z1(z2z3) z1, z2, z3 C korral

Lineaaralgebra




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun