Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

"-valgusallikad" - 138 õppematerjali

thumbnail
13
ppt

Valgusallikad

Valgusallikate ajalugu ja valguse omadused Valgustite ajalugu Kõige esimesteks valguse allikateks olid tuli, leek ja tõrvik, mis tekkisid u. 400 000 aastat e.Kr. Tõrvikut tehti näiteks väga peentest okstest. Tõrvik oli ühtlasi esimene kaasaskantav lamp. Küünal tekkis umbes 150 aastat e.Kr. Petrooleumlambid Algelistele lampidele järgnesid petrooleumlambid. Petrooleumi arendas Dr. Abraham Gresner. Petrooleumlambi leiutajaks oli Francois Pierre Argand, see leiutati Prantsusmaal 1783ndal aastal. Kütusena kasutati igasuguseid erinevaid õlisid. Gaasipõleti Vaba leegiga gaasipõleti leiutati Sotimaal 1782. aastal ja gaasilamp patenteeriti 1799ndal aastal. Gaasi puhtuse puudumine ja vähene valguse hulk lükkasid gaasivalgustuse populaarsuse edasi, kuni Carl Auer von Welsbachi lei...

Füüsika → Füüsika
48 allalaadimist
thumbnail
3
odt

Valgusallikad

Valgusallikad 1. Hõõglamp. Hõõglamp on lamp, milles optilist kiirgust tekitab hõõguv tahke keha. Hõõglamp (kõnekeeles tuntud ka kui elektripirn) on valgustusseade, kus helendub elektrivoolu poolt kõrge temperatuurini kuumutatud hõõgniit. Kõige tavalisem-elektrihõõglamp- koosneb klaaskolvist ja selles paiknevast elektrivooluga kuumutatavast hõõgkehast (hõõgniidist, hõõgribast, hõõgvardast vms). Hõõgniit valmistatakse volframist(sulamistemperatuur 3400°C), kuna selle sulamistemperatuur on kõrgeim. Umbes meetri pikkune ja u 50 m jämedune volframtraat on vormistatud ühe või kahekordse spiraalina mahutamaks seda väikesesse ruumi. Hõõgniit on kompaktsuse eesmärgil enamasti kujundatud keermikuna. Hõõgniit paikneb klaaskolvis, mis on väliskeskkonnast õhukindlalt eraldatud. Tänapäeval on klaaskolb täidetud väärisgaasiga (argoon või krüptoon), mis suurendab hõõgniidi eluiga. Varem oli lihtsalt klaaskolvis olev...

Füüsika → Füüsika
59 allalaadimist
thumbnail
1
doc

Valgusallikad, kiirgus

R Kõik kehad, mille temperatuur on üle 0C K, kiirgavad soojus kiirgust kõikidel lainepikkustel. Mida suurem on keha temp, seda suurem on kiirguse võimsus. Kiiratava energia jaotus sõltub temperatuurist. Mida kõrgem on temperatuur seda lühematele lainepikkustele nihkub el.mag. laine kiirguse jaotuse maksimum Iseloomustavad suurused: 1). Energeetiline valgsus, e integraalne kiirgusvõime Keha pinnaphikult ajaühiku jooksul kiiratud energia. Keha pinnaühikult kiiratud võimsus. E ­ Kiiratud energia; t ­ ajaühik; S ­ pindalaühik; P - võimsus E P J W R= = [ R] = 1 2 = 1 2 t ×S S sm m 2). Diferentsiaalne kiirgusvõime r= R [ r ] = W3 m 3). Neel...

Füüsika → Füüsika
95 allalaadimist
thumbnail
4
docx

Valgus, valgusallikad

1. Mda kujutab endast valgus? Valgus on liitvalgus ja erinevad spektri värvid selle koostisosad Valgus on elektrommagnet laine, see tähendab elektrivälja ja magnetvälja võnkumiste levimine 2. Kui suur on valguse kiirus vaakumis ja mille poolest on see kiiruse väärtus eriline? Vaakumis levib valgus kiirusega 300 000 km/s Eriline, sest see on suurim võimalik kiirus looduses 3. Millised aineosakesed kiirgavad valgust? Aine aatomid 4. Mida tähendab aatomi ergastamine? Selleks, et aatom hakkaks kiirgama tuleb teda eelnevalt ergastada (energiat anda) 5. Mille põhjal ja kuidas liigitatakse valgusallikaid? Valgusallikad liigitatakse aatomie ergastamise viisi põhjal kahte rühma: 6. Mis on soojuslik valgusallikas? (too näiteid) Soojuslikud valgusallikad- aatomid ergastuvad kõrge temperatuuri tõttu (päike, elus tuli, hõõglambid) 7. Mis on külm valgusallikas? (too näiteid) Külmad valgusallikad- aatomid ei...

Füüsika → Optika
13 allalaadimist
thumbnail
11
doc

Erinevad valgusallikud, nende tootlikkus ja säästlikus

KOOL NIMED ERINEVAD VALGUSALLIKAD, NENDE TOOTLIKKUS JA SÄÄSTLIKUS Referaat Juhendaja: Nimi Tallinn 2012 SISSEJUHATUS Viimastel aastatel on energiasäästlikkus väga aktuaalne teema. See on juhtinud paljude inimeste silmad rohelisema eluviisi poole. Kuna vajadus täiendava valguse järgi on aastakümnete jooksul ainult kasvanud, siis suur hulk arenenud inimkonna energiakuludest moodustavad tehislikud valgusallikad. Üha enam üritatakse luua valgusallikaid, mis vähese energiakulu juures suudavad toota palju valgust. Selle töö eesmärk on võrrelda erinevate valgusallikate tootlikkust ja säästlikkust. Toome välja eri liiki lampide eeldused ja puudused. Uurime, kuidas inimesed igapäevaselt valgusallikaid kasutavad ja mida nad neist teavad. Arutleme, kuhu võiks tulevikus edasi areneda. ...

Füüsika → Füüsika
14 allalaadimist
thumbnail
12
pptx

Valgus

Valgus Koostaja: Emilia Õim 8.Klass Mis on valgus?  Valgus on elektromagnet kiirgus. Enamasti mõtleme selle all nähtavat valgust. Kuid peale nähtava valguse on ka olemas ultravalgus ja infravalgus.  Valgust mõõdetakse valgus lainepikkusega-elektromagnetlaineks.  Valgus kannab energiat Mis on valgus?  Spekter-näitab, millist värvi või millise lainepikkusega valgusi valgusallikas kiirgab  Päikese valgust nimetatakse valgeks valguseks  Valgus tekib lämmastiku ja hpniku aatomites Päikeselt saabuvatest osakestest Erinevad valgusallikad Inimeste teiktatud looduslikud  Lamp  Jaanimardikas  Küünal  Virmalised  Lõkke  Päike  jne  jne Värvused  Värvusi on seitse  Lihtvalgus- koosneb ühest värvilisest valgusest  Liitvalgus- koosneb mitmest värvilisest valgusest  Valge valgus- koosneb värvilistest valgutest, selle koostis on samasugune nagu Päikese valg...

Füüsika → Füüsika
2 allalaadimist
thumbnail
8
docx

Füüsika ja elektrotehnika alused, eksamiküsimused

1. Elektrivool- elektrilaenguga osakeste suunatud liikumist, I A. 1A ­ voolutugevus mille korral juhi ristlõiget läbib sekundis elektrihulk 1 q. Juhid Dielektrikud Jaguneb: Alalisvool- vool, mille suund ja tugevus ajas ei muutu. Vahelduvvool- vool, mille suund ja tugevus ajas perioodiliselt muutuvad Voolutugevus on arvuliselt võrdne ajaühikus juhi ristlõiget läbinud elektrilaengu suurusega. Vabadeks laengukandjateks nimetatakse laetud osakesi, mis saavad aines vabalt liikuda. Elektrivoolu suunaks loetakse positiivse laenguga osakeste liikumise suunda. Elektrivooluks metallides nimetatakse vabade elektronide suunatud liikumist. Vabade elektronide suunatud liikumine metallis on vastupidine elektrivoolu kokkuleppelisele suunale. Elektrivooluks elektrolüüdi vesilahuses nimetatakse ioonide suunatud liikumist. Eliktrivooluga ...

Füüsika → Füüsika ja elektrotehnika
16 allalaadimist
thumbnail
4
doc

Füüsika referaat Valgus

Valgus Füüsika referaat Koostaja: Valguseta oleks elu Maal võimatu. Päiksevalgus tagab olenditele elu. Valgusenergiat kannavad nähtamatud lained. Valgusnähtusi uurivat füüsika osa nimetetakse optikaks. Valgusosakesi nimetatakse footoniteks. Kui footnid satuvad silma, siis mõjutavad nad valgustundlikke rakke ja tekib nägemisaisting. Valguslained on elektromagnetlained. Eri lainepikkusega valguslained tekitavad erineva värvusaistingu. Nähtav valgus moodustab elektromagnetlainete spektrist väga väikese osa. Elektromagnetained, sealhulgas valgus, levivad kiirusega 300 000 km/s, jõudes ühe sekundiga peaaegu kaheksa korda ümber Maa käia. Valguse kiirus on maailma suurima teadaolev kiirus. Valgusallikad Valgusallikaks nimetatakse valgust kiirgavat keha. Päike ja hõõglamp hõõguvad, see tähendab, et nad helendavad sellepärast, et on kuumad. Kuid kõik valgusallikad ei ole kuumad. Süvamerekalade ja teisete o...

Füüsika → Füüsika
62 allalaadimist
thumbnail
1
docx

Valgusallikas

Essee Valgusallikas Valgust on meil üldse vaja selleks , et me üldse näeks midagi ning valgusest (päikesevalgusest) saab inimorganism palju vajalikku , et üldse elada ning areneda ning seetõttu ma räägingi ,milline allikas valgus on meile .Peamine mõiste , kuidas valgusallikat lahti seletatakse on: valgusallikad on kehad , mis kiirgavad valgust . Valgusallikad on juba ammusest ajast liigitatud: kuumad või külmad, looduslikud, elus või eluta . Kuumad ,lisaks valgusele kiirgavad ka soojust( nt. Päike, hõõglamp ), külmad aga on ainult valgusallikaks ( nt. arvutiekraan, päevavalguslamp) . Elusolevad valgusallikad on näiteks jaanimardikas ning laternkala ning elutudeks võib lugeda päikese, tähe ja äikese. Valgus liigutub kolmeks põhiliseks liigiks . Nähtav valgus ,mis tekitab nägemisaistingu ja inimene saab vaadelda ümbritsevat keskkonda oma silmadega. Ultravioletkiirgus ehk u...

Füüsika → Füüsika
8 allalaadimist
thumbnail
6
doc

Miks me näeme kehi ?

Referaat Miks me näeme kehi? Koostaja : Sisukord Sissejuhatus 2 Miks me näeme kehi 3 Kehad meie silmale 3 Kehade nägemiseks vajav valgus 4 Kokkuvõtte 6 Kasutatud kirjandus Sissejuhatus Tähtsaimaks meeleelundiks inimese elus on silmad. Inimene saab enamus informatsiooni maailmast nägemise kaudu. Aga kuidas me ikkagi näeme kehi, kas see on visuaalne pete või mingi looduse järjekordne vingerpuss meie, inimeste kapsaaeda? Sellest üritan lähemalt rääkida järgnevas l...

Füüsika → Füüsika
22 allalaadimist
thumbnail
6
docx

Valgus, peegeldumine ja peeglid

Füüsika Opsis - nägemine Valgusoptika - valgusõpetus Optika on füüsika osa mis uurib ja seletab valgusnähtuseid. Optika - valguskiir Valguskiir - valgusenergia levikut näitav joon Valgusallikas - koht, kust valgus tuleb Liigitatakse järgmiselt: 1. Looduslikud valgusallikad (Päike, jaanimardikas...) 2. Tehislikud/Kunstlikud valgusallikad Valguse vastuvõtja - koht, kuhu valgus läheb (Silm) Valguskiirus = u 300 000 km/s (vaakumis - keskkond kus pole aineosakesi) Tähis: c Mida optiliselt tihedam on keskkond, seda väiksem on valguskiirus. Valge valgus koosneb osadest. (spekter, ehk vikerkaarevärvid) Spekteri värvid: Punane, oranz, kollane, roheline, helesinine, sinine, violetne Valguskiirte sõltumatuse seadus - Valguskiired läbivad teineteist sõltumatult. Sirgjooneline levimise seadus - Homogeennses keskkonnas levib valgus alati sirgjooneliselt. (homogeenne - ühtlane) Peegeldumisseadus - Peeg...

Füüsika → Optika
15 allalaadimist
thumbnail
3
docx

Valgus, peegeldumine ja peeglid

Füüsika Opsis - nägemine Valgusoptika - valgusõpetus Optika on füüsika osa mis uurib ja seletab valgusnähtuseid. Optika - valguskiir Valguskiir - valgusenergia levikut näitav joon Valgusallikas - koht, kust valgus tuleb Liigitatakse järgmiselt: 1. Looduslikud valgusallikad (Päike, jaanimardikas...) 2. Tehislikud/Kunstlikud valgusallikad Valguse vastuvõtja - koht, kuhu valgus läheb (Silm) Valguskiirus = u 300 000 km/s (vaakumis - keskkond kus pole aineosakesi) Tähis: c Mida optiliselt tihedam on keskkond, seda väiksem on valguskiirus. Valge valgus koosneb osadest. (spekter, ehk vikerkaarevärvid) Spekteri värvid: Punane, oranz, kollane, roheline, helesinine, sinine, violetne Valguskiirte sõltumatuse seadus - Valguskiired läbivad teineteist sõltumatult. Sirgjooneline levimise seadus - Homogeennses keskkonnas levib valgus alati sirgjooneliselt. (homogeenne - ühtlane) Peegeldumisseadus - Peeg...

Füüsika → Lääts ja murdumine
11 allalaadimist
thumbnail
4
docx

Miks me näeme kehi ?

Miks me näeme kehi ? *VALGUS Valgusallikaks nimetatakse valgust kiirgavat keha. Valgusallikad mis kiirgavad valgust seetõttu et on kuumad neid nimetatakse soojuslikeks valgusallikateks . Näiteks: lõke, elekripirni hõõgniit ja päike. Jahedad või külmad valgusallikad on valgusallikad mis kiirgavad valgus olles ise jahedad. Näiteks: virmalise,helendavad organismid ja teleriekraan. Valgus, mis tekitab valgusaistangu, nimetatakse nähtavaks valguseks. Infravalgus on nähtamatu valgus, mille abil soojenevad kehad see päras nimetatakse seda ka soojus kiirguseks . Ultravalgus on organismidele ohtlik nähtamatu valgus. Ultravalguse eest kaitseb maad osooni kiht. *VALGUSE LE...

Füüsika → Füüsika
26 allalaadimist
thumbnail
4
rtf

Põhikooli füüsika valemid ja tähtsamad mõisted

Nähtav valgus Nähtamatu valgus: Infrapunavalgus (soojuskiirgus; ümbritseb kõiki sooje kehasid ja seda ka pimedas) Ultravolettvalgus (millega me päevitame; liigse UV kiirguse eest kaitseb osoonikiht) Valgusallikad: Soojuslikud valgusallikad (kiirgavad lisaks valgusele ka soojust) Külmad valgusallikad Valgusfiltrid Valguse peegeldumine Peeglid (kumer- ja nõguspeegel) Fookus Valguse murdumine Valguse liikumine suurema tihedusega keskkonda - valgus murdub allapoole Valguse liikumine väiksema tihedusega keskkonda - valgus murdub ülespoole Optiline tugevus = 1 / fookuskaugus; ühikuks on dioptria (dpt) D=1/f ­ tihedus; ühikuks on kg/m³ =m/V Fr ­ maapinna lähedal olevatele kehadele mõjuv raskusjõud; ühikuks on njuuton (N) Fr = m · g g ­ 9.8 N/kg Hõõrdejõud P ­ rõhk; ühikuks on paskal (Pa) P = F / S = mg / S = hg (h ­ kõrgus) Vedelikule või gaasile avaldatud rõhk levib vedelikes ja gaasides igas suunas ühtemoodi. (Pascali seadus) Fü ­...

Füüsika → Füüsika
12 allalaadimist
thumbnail
4
doc

Valgusõpetus ehk optika

Valgusõpetus e optika Valgusallikad ­ kehad, mis kiirgavad valgust Soojuslikud valgusallikad on näiteks päike, lõke, hõõglamp, küünlaleek. Külmad valgusallikad on näiteks virmalised, teleriekraan, jaaniussid, teatud batkerid Valgusega kandub energia ümbritsevasse ruumi, seepärast tuleb valgusallikale anda energiat. Me oleme harjunud, et valgusallikad kiirgavad valgust, mille tõttu me kehi näeme. Kuid valgusallikad kiirgavad ka sellist valgust, mida me ei näe. Valgust, mis tekitab valgusaistingu, nimetatakse nähtavaks valguseks. Nähtamatu valgus: infrapuna- (IV) ja ultravalgus (UV). Infravalguse toimel kehad soojenevad ja seetõttu nimetatakse seda valgust soojuskiirguseks. Ultravalgust liigitatakse organismidele väheohtlikukuks ja ohtlikuks. Ohtlik osa võib tekitada nahavähki, mikroobidele mõjub aga surmavalt. Liigse UV eest kaitseb maad osoonikiht. Valguse levimiseks nimetatakse valgusenergia kandumist ruumi....

Füüsika → Optika
13 allalaadimist
thumbnail
1
docx

Optika

Lainepikkus-lähim teekond samas võnkefaasis oleva kahe punkti vahel Monokromaatne valgus-sama lainepikkusega valguslainetest Laine periood T-aeg, mille jooksul valguse läbib ühe lainepikkuse Laine sagedus f-valguslaine täisvõngete arv ajaühikus Laine faas-määrab laine võnkeseisundi antud ajahetkel(siinusfunktsiooni argument) Lainefront-pind või joon, mis eraldab keskkonna, kuhu laine pole veel sattunud, keskkonnast, mille laine on läbinud Difraktsioon-lainete paindumine tõkete taha Interferents-lainete liitumine, mille tulemusel lained kas nõrgendavad või tugevdavad teineteist Koherentsed valgusallikad-valgusallikad, mille võnkesagedused on võrdsed ja faaside vahe jääv. Koherentsed lained-lained, mille võnkesagedus on võrdne ja faaside vahe jääv Valguskiir ­ valguse levimise suunda näitav joon Valguse sirgjoonelise levimise seadus ­ valgus levib ühtlases keskkonnas sirgjoonelilselt Murdumine-laine levimissuuna muutumine Murdumisseadus- ...

Füüsika → Füüsika
15 allalaadimist
thumbnail
1
docx

Valgus ja selle levimine

Valgus. Valgusallikas on valgust kiirgav keha.Valgusallikaks nimetatakse valgust kiirgavat keha. Päike, lõke ja elektripirn on soojuslikud valgusallikad, sest nad kirigavad valgust seetõttu, et on kuumad. Valgusega kandub energia ümbritsevasse ruumi, seepärast tuelb valgusallikale anda energiat. Elektrilambile saab seda anda vooluallikast, küünlale põlemisest ning päikestele ja tähtedele tuumareaktsioonid. On ka valgusallikaid, mis kiirgavad valgust, aga on ise jahedad-külmad valgusallikad. Sellised on näiteks televiisor,suhteliselt on ka luminestslamp ja suveõhtutel emased jaanimardikad, lõunameredes elavad kalad sügaval vees. Valgus, mis tekitab valgusaistingu, on nähtav valgus. Nähtamatu valguse üks osa on infravalgus. Selle toimel kehad soojenevadja seetõttu nimetatakse seda ka soojuskiirguseks.Ultravalgus aga võib tekitada naha põlemist kevadel. Ultravalgus on nähtamatu ning seda liigitatakse...

Füüsika → Füüsika
33 allalaadimist
thumbnail
30
pptx

VALGUSENERGIA

* VALGUSENERGIA *Valgus on elektromagnetkiirgus, mille lainepikkus on vahemikus 380...760 nanomeetrit. Lainepikkus 380 nm tähendab lillat, violetset serva spektris ja 760 nm lainepikkusega lõpeb punase värvusena tajutava valguse ala. *VALGUS *Valguskiirgus tekitab inimese silmas valgusaistingu. Erineva lainepikkusega valguskiirgust tajub inimene erineva värvusena. Inimene on võimeline eristama 2 nanomeetri suurust muutust valguskiirguse lainepikkuses. Seega on inimene teoreetiliselt võimeline eristama umbes 150 spektrivärvi. *VALGUSKIIRUS *Mõnikord mõistetakse valgusena ka ultraviolettkiirgust ja infrapunakiirgust. *Ülekantud tähenduses mõistetakse valguse all ka teadmisi või tarkust. *Valguskiirgust mõõdetakse nt valgusmõõdiku ehk fotomeetriga. *Valgusallikas on valgust kiirgav keha. *Valgusallikaid liigitatakse soojuslikeks (kuumadeks) ja külmadeks. *VALGUSA...

Füüsika → Füüsika
10 allalaadimist
thumbnail
4
docx

Fotoeffekt

1. Mis on fotoeffekt? Fotoeffektiks nim. Elektronide väljalöömist ainest valguse toimel. 2. Stoletovi katseseade. Kujutab endast klaasballooni, millest on õhk välja pumbatud. Balloonis on 2 elektroni ( anood, katood). Katoodile langeb valgus läbi kvarts aknakese. Elektronid liiguvad anoodi poole ja tekitavad vooluringis voolu, mille tugevust mõõdetakse milliapermeetriga. Pinget anoodi ja katoodi vahel saab mõõta. Osa valguse poolt väljalöödud elektrone jõuavad anoodile ka siis, kui pinge on null. 3. Fotoeffekti I seadus. Selgita, kuidas selleni jõuti. Valguse poolt ühest sekundis väljalöödud elektronide arv on võrdeline valguse intensiivsusega e. Heledusega. Stoletov muutis katoodile langeva valguse värvust, koos sellega sagedust. Sellest tingituna muutus tõkke pinge suurus. Mida suurem sagedus, seda suurem tõkkepinge. 4. Fotoeffekti II seadu...

Füüsika → Füüsika
38 allalaadimist
thumbnail
13
odp

LED-pirnide võrdlus luminofoor- ja hõõgpirnidega

LED-pirnide võrdlus luminofoor- ja hõõgpirnidega Karina Sein Juhendajad: Erikki Tempel (õpetaja) Kalev Uiga (M. Sc, TÜ keskkonnatehnoloogia eriala) Sissejuhatus v Euroopa Liidu nõudel tuleb Eesti Vabariigil suurtes kogustes energiat (sh elektrienergiat) säästa. v Valgustusele kulub umbes neljandik hoone energiakulust, mida saab vähendada LED-lampide kasutusele võtmisega. v 2014. aasta Nobeli füüsikapreemia said Jaapani ja Ameerika Ühendriikide teadlased tõhusa sinise valgusdioodi loomise eest. v Antud uurimistöös võrreldi erinevat tüüpi elektripirnide (nt hõõg-, luminofoor- ja valgusdioodpirn) kasutamisega kaasnevaid kulusid tarbijale ning üritati leida sellest tulenevaid kokkuhoiu võimalusi nii kodumajapidamistes kui ka avalikes hoonetes (nt klassiruumis). LED-lampide kasutamise positiivsed kü...

Elektroonika → Energeetika
4 allalaadimist
thumbnail
27
doc

Füüsika

Füüsika Pärnu Koidula Gümnaasium; Pärnu Sütevaka Humanitaargümnaasium Sander Gansen 7a./8a./9a/TH/SH. klass 20072012 Sisukord 1.1. Füüsika............................................................................................................................. 5 1.2. Aine erinevates olekutes................................................................................................... 6 1.3. Aine tihedus...................................................................................................................... 7 1.3.1. Aine tiheduse tabel:.......................................................................................................7 1.4. Ühtlane liikumine.............................................................................................................9 1.4.1 Ühtlase liikumise kiirus............................

Füüsika → Füüsika
26 allalaadimist
thumbnail
6
doc

Optika

Koostas:Liis Kaljuvee Paikuse põhikool 8 klass 1 Sissejuhatus optikasse......................................................................................2 Valgusallikad............................................................................................. 3 Valguse levimine ........................................................................................ 3 Valguse peegeldumine .........................................................................................4 Valguse murdumine.................................................................................................4 .............................................................................................................................................6 Sissejuhatus opt...

Füüsika → Füüsika
51 allalaadimist
thumbnail
1
odt

Töökeskkonna ohutusnõuded sekretärile

TÖÖKESKKONNA OHUTUSNÕUDED SEKRETÄRITÖÖLE · Tööruum peab olema sisustatud nii, et ei tekitaks tööõnnetusi või kutsehaigusi · Tööruumis peab olema töökorras tulekustuti või tuletekk · Tööruumis peavad olema nõuetele vastavad esmaabivahendid · Tööruumis peab olema igal laual evakueerimisplaan · Tööruumis peab olema piisavalt valgust ja valgusallikad ei tohi ohustada töötajat, samuti igal laual eraldi lamp · Töötajat ohustavad töövahendid tuleb kõrvaldada · Tooli ja töölaua või töötasandi paigutus peavad tagama töötajale ergonoomiliselt õige kehaasendi · Töökeskkonna müra ei tohi segada töötajat · Suitsetamine on tööruumis keelatud · Tööruumi sisekliima ja ohtlike ainete sisaldus õhus peavad vastama kehtestatud normidele.

Muu → Ainetöö
7 allalaadimist
thumbnail
13
doc

Füüsika 2 - Mere - teooria 76-89

76. Mis on täielik peegeldus? Joonis, valem, seletus, rakendused. Suurendades langemisnurka , jõuame olukorrani, kus =900 ja edasisel langemisnurga suurendamisel kiir teise keskkonda ei levi. See on täielik peegeldus. Langemisnurk, mille juures murdumisnurk on 900 on antud keskkondade jaoks sisepeegeldumise piirnurk. Detailsemal uurimisel selgub, et valguslaine sukeldub teise keskkonda poole lainepikkuse ulatuses ja naaseb siis. See efekt on energeetiliselt 100%-se kasuteguriga. Kiudoptika, veekogu, kalade nägemine. Ka siin kehtib kiire pööratavus. 77. Mis on Fermat' printsiip? Optiline teepikkus kui järeldus Fermat' printsiibist. Fermat' printsiip. Fakt: Homogeenses keskkonnas levib valgus sirgjooneliselt ja mittehomogeenses keskkonnas kõverjooneliselt. Fermat' printsiip: valgus levib mööda sellist teed, mille läbimiseks kuluv aeg on minimaalne. ...

Füüsika → Füüsika ii
406 allalaadimist
thumbnail
2
docx

Kvantfüüsika

KVANTFÜÜSIKA Valgus Valgus on elektromagnetiline laine, lainepikkusega 380nm < < 760nm c = 3 * 108 - Valguse kiirus vaakumis c=*f ­ lainepikkus f ­ sagedus ( * 1014 Hz) Nähtused: 1. difraktsioon 2. interferents 3. dispersioon 4. murdumine Valgus on osakeste voog. Valgusosakesi nim. kahe erineva nimega 1)kvant 2)footon Iseloomustab: Energia, mass, on üks aineosake. Kõik valgusallikad kiirgavad footoneid s.t. tuli/päike kiirgavad valgust ,,portsude" kaupa, kui valgus neeldub (nt seinas, vees) siis footonid neelduvad. Plancki idee Aatomid kiirgavad elektromagnetlaineid üksikute kvantide(footonite) kaupa. Iga footoni energia on võrdeline valguse sagedusega. E ­ ühe footoni energia f ­ sagedus h ­ planki konstant ( 6,62 * 10-34 J * s ) E=h*f Fotoeffekt Kiirgus langedes metallipinnale, võib sealt välja lüüa elektrone. f ...

Füüsika → Füüsika
39 allalaadimist
thumbnail
11
ppt

Röntgenfotoaparaat

Röntgenfotoaparaat Triinu Meier 11.B VPG Juttu tuleb Mis on röntgenkiirgus? Kasutusvaldkonnad Mis see on? Kuidas töötab? Röntgenkiirgus * Röntgenkiirgus on elektromagnetkiirgus lainepikkuste vahemikus 0,01­10 nm. See on kõige tuntum kasutuse tõttu meditsiinis, kus sellega tehakse röntgenpilte. Röntgenkiirgus on nime saanud Wilhelm Conrad Röntgeni järgi, kes seda nähtust esimesena põhjalikumalt uuris. Kasutusvaldkonnad Meditsiin Fotograafia Astronoomia Mis see on? Röntgenfotoaparaat ei ole loodud kasutamiseks otseselt meditsiinis. Sellist seadeldist kasutatakse tänapäeval enamasti fotograafias. Röntgenfotoaparaat sarnaneb tavalisele fotoaparaadile ainult välimiselt. Kuidas töötab? Röntgenfotoaparaadid kasutavad infrapunafiltreid mis i...

Füüsika → Füüsika
8 allalaadimist
thumbnail
2
pdf

Gaaslahendused

Sädelahendus: Sädelahendus ilmneb, kui vooluallikas ei ole võimeline sõltumatut elektrilahendust pikema ajavahemiku vältel säilitama. Sädelahendus kestab lühiajaliselt, seda seetõttu, et lahenduse ajal toimub märgatav pinge langus. Sädemed tekivad vooluahelate katkestamisel, näiteks lüliti või relee kontaktide vahel. Sädelahendust rakendatakse nt sisepõlemismootori süütesüsteemis ja metallipinna sädetöötlemisel. Looduslik sädelahendus on välk. Kaarlahendus: Kaarlahendus on kestev sõltumatu gaaslahendus, millele on iseloomulik suur voolutihedus ja gaasi (leegi) kõrge temperatuur. Kaarlahendus saab tekkida gaasi rõhul, mis on suurem kui 10­2Pa. Kaarlahendust rakendatakse keevitusseadmetes (kaarkeevitus), kaarahjudes (metallurgias), gaaslahenduslampides. Huumlahendus: Huumlahendus tekib pinge rakendamisel gaasile. Huumlahenduse mõnes piirkonnas on aine plasmaolekus. Ioonide tekkimisel suureneb lahendusvahemiku elektrijuhtivus ja...

Füüsika → Füüsika
4 allalaadimist
thumbnail
1
docx

Laser

Metastabiilsus-pikaaeline tase(kahvatu kiirgus)kvantsiirde jooksul-võngub elektron aatomis erinevate leiulainete vahel.ergastatud kvantseisund püsib -10astmes-9....10astmel- 8sek.,metastab -10astmel-3s luminestsents-*külm helendus *tahkiste,vedelike,või gaaside mittesoojuslik helendus ultravalguse,elektronkimbu,keemilise reaktsiooni vms toimel*luminofoorid- luminestsentsvalgust kiirgavad ained(nt:org.värvained,väixeid lisandihulki sisaldavad anorg.ained) *kristallfosfoorid-väikesed lisandihulki sisald.ained (ZnS,Cu) *luminests.footonid tekivad siiretel lisandiaatomis või ­ioonis *kristallfosfoorid katavad luminests.lampide,teleri,arvutikuvari ekraanide sisepinda !!!!1.kui footon energiaga hf=Ek-Em tabab aatomit ergastustasemel Ek stimuleerib ta aatomit kiirgama.stimuleeritav ja kiiratud footon on omavahel koherentsed(teineteise koopiad) !!! 2.Kiirguslikud siirded (aatomi vm kvantsüst.energiatasemete vahel):1.footoni neeldumine2.vaba ehk...

Füüsika → Füüsika
43 allalaadimist
thumbnail
8
pdf

Eksamiks kordamine füüsika 8. klass

Füüsika 8.kl Päikeses muundub vesinik heeliumiks, ta on üks tähtedest. Planeedid alates päikesest on Merkuur, Veenus, Maa, Marss, Jupiter, Saturn, Uraan, Neptuun. Päikesesüsteemia kehade tõmbejõud tagab süsteemi terviklikkuse. Maa atmosfäär muutub kõrgemal hõredamaks. Aastaajad vahelduvad, sest Maa pöörlemistelg pole tiirlemisasendiga risti. Võnkumiseks nim liikumist, mis kordub teatud ajavahemiku järel, keha läbib sama tee edasi-tagasi. amplituudasend on pendli asukoht, kus liikumise suund muutub ja pendel hakkab tagasi liikuma. Võnkeperiood (T)-ajavahemik, mis kulub ühe täisvõnke tegemiseks (s). T=t/n t-aeg n- võngete arv Võnkesagedus (V)- mitu täisvõnget teeb keha ühes ajaühikus (Hz). V=1/T amplituud on keha suurim kaugus taskaaluasendist. periood on ühe täisvõnke kestvus. sagedus näitab, kui mitu võnget tehakse sekundis. sagedus on võrdne võnkeperioodi pöördväärtusega. f=1/T ühik on H...

Füüsika → Füüsika
27 allalaadimist
thumbnail
14
pptx

VARI

V A R I H.RUUL 2017 VALGUSE LEVIMINE VALGUSE LEVIMINE... MITTEÜHTLASES KESKKONNAS - VÕIB OLLA ÜHTLASES KÕVERJOONELINE; KESKKONNAS- MITTEÜHTLASED KESKK.-D SIRGJOONELINE; ATMOSFÄÄR KEHA, MILLE ERINEVAD PIIRKONNAD ERINEVA TEMPERATUURIGA LAHUS- ERINEVA KONTSENTRATSIOONIGA MIKS VALGUSTAB LAMP KAUGEMALT HALVASTI? VALGUSALLIKAST EEMALDUMISEL JAOTUB ENERGIA SUUREMALE PINNALE; KIIRTEMUDEL - VALGUSVIHKUDE KIIRTEMUDEL MUDELDAMISEKS. VALGUSE VALGUSVIHUD: LEVIMISE SUUND - VALGUSKIIREGA PARALLEELNE HAJUV KOONDUV PARALLEELNE KOONDUV VALGUSVIHK VALGUSVIHK - KUI - ...

Füüsika → võnkumine ja lained
3 allalaadimist
thumbnail
13
pptx

Planeedid

PLANEEDID LOODUSÕPETUSE TUND IV KLASSILE Kui palju on Päikesesüsteemis planeete? Päikese ümber tiirleb palju taevakehi, suuremaid neist peetakse planeetideks Päikese ümber tiirleb 8 planeeti Planeedid on oma nime saanud Rooma ja Kreeka jumalate järgi Alustades Päikesest: Merkuur, Veenus, Maa, Marss, Jupiter, Saturn, Uraan, Neptuun Planeetide liikumine ja valgus Planeedid liiguvad ümber Päikese mööda ringjoont ehk orbiiti. Sellist liikumist nimetatakse tiirlemiseks Samal ajal pöörlevad planeedid ka ümber oma kujuteldava telje Tähed kiirgavad pidevalt valgust: nad on valgusallikad. Planeedid ise ei helenda, vaid peegeldavad valgust. VIDEO https://www.youtube.com/watch?v=5c_lL6I3OaA 0.15 sek ­ 0,35 sek Merkuur Päikesele kõige lähem planeet Päikesesüsteemi väikseim planeet Mercuriuse järgi saanud nime Pole kaaslasi Veenus Päikesest 2. planeet ...

Astronoomia → Astronoomia
11 allalaadimist
thumbnail
4
docx

Indikatsioonielemendid

INDIKATSIOONIELEMENDID Indikatsioonielemendid võivad olla LED’id, hõõglambid, LCD-DISPLAY’d. LED ehk valgusdiood on elektroonikas kasutatav pooljuhtdiood, mis kiirgab valgust. Õige suurusega pinge rakendamisel hakkab valgusdiood kiirgama kindla lainepikkusega valgust, mis sõltub kestast ja teistest koostiselementidest, mida valgusdiood sisaldab. Valgusdioodil on kaks kontakti – anood(+) ja katood(-). Valgusdioodide eelised on:  Kerge paigaldada  Ei põle läbi  Tõhusam konkreetse värvi kiirgamisel  Vibratsiooni- ja purunemiskindlad  Keskkonnasõbralik tootmine  Väikesed. Mahuvad kohtadesse kuhu teised valguslahendused ei mahu  Valgustugevust on kerge reguleerida  Valguse süttimise aeg on väga kiire Vastavalt materjalide valikule võib valgus olla erivärviline – punane, roheline, kollane, infrapunane jne. Valgusdioode kasutatakse indikaatoritena mitmesugustes elektroonikaseadmetes: telev...

Tehnika → Elektrotehnika
6 allalaadimist
thumbnail
7
docx

Elektrikaup

Tallinna Tööstushariduskeskus Elekrikaubad Referaat Tallinn 2010 Sisukord Sissejuhatus................................................................................................. 3 Tooteohtus...........................................................................................4 Valgustusseadmed ..............................................................................6 Valgusallikad........................................................................................7 Sissejuhatus Elektrilised seadmed aitavad säästa aega, muutes väga paljude tööde tegemise hõlpsamaks ja mitmekesistades teostusvõimalusi. Samas ei tohi ära unustada elektri ülimat eluohtlikkust. Iga isik, kellele elektriseade kuulub või kes on muul viisil vastutav selle kasutamise eest, peab tagama, et seadet kasutataks ohutult ning hooldataks piisa...

Meditsiin → Tööohutus ja tervishoid
24 allalaadimist
thumbnail
1
doc

Füüsika - valgus

1. Inimsilm on kõige tundlikum rohelisele valgusele lainepikkusega 555 nm. 2. Valguslaine üldomadused: 1) on ristlaine 2) levib vaakumis 300000km/s 3)Lainepikkusest sõltub valguse värvus 4) koosneb elektri- ja magnetväljast 3. Silm on tundlik elektrivälja suhtes. 4. Valguse difraktsiooniks nimetatakse nähtust, kus lained kanduvad tõkete taha. 5. valguse difraktsioon tekib, kui pilu või takistuse mõõtmed on väiksemad või võrreldavad valguse lainepikkusega. 6. valguse difraktsiooni põhjustavad koherentsed lained. 7. Valguslained tugevdavad üksteist, kui liituvad samas faasis olevad lained. 8. Valguslained nõrgendavad üksteist, kui kui liituvad vastandfaasis olevad lained. 9. Miks me suurte avade korral ei näe difraktslooni? Kui avade mõõtmed on väga palju suuremad valguse lainepikkusest, siis difraktsioon on tühine ja valguse levimist võib pidada sirgjooneliseks. 10. Miks ei saa aatomid kiirata pidevalt? Sest kiirgu...

Füüsika → Füüsika
57 allalaadimist
thumbnail
1
doc

Kvantoptika

Elektromagnetiline laine,lainepikkusega 380nm(violetne,suurim sagedus) < < 760nm(punane,väikseim sagedus). Nähtused:difraktsioon,interferents,dispersioon,murdumine. c = 3 * 108 m/s. c = * f. ­ lainepikkus,f ­ sagedus. Valgus on osakeste voog. Valgusosakesi nim. kahe erineva nimega kvant,footon. Iseloomustab:energia,mass,1aineosake. Kõik valgusallikad kiirgavad valgust kvantide kaupa. Kvanti käsitletakse,kui ühte energia portsionit. Fotoefekt:kiirguse langedes metallipinnale võib sealt välja lüüa elektrone. Tekkimise tingimus: ühe footoni energia peab võrduma elektronide väljumistööga. E = A. E=ühe footoni energia, A=elektronide väljumistöö. Fotoefekti seaduspärasused:Valguse poolt metalli pinnast ühes sekundis eraldunud eletronide arv on võrdeline valguslaine intensiivsusega(mida suurem on kiirus,seda rohkem eraldub elektrone). Fotoelektronide maksimaalne kineetiline energia kasvab võrdeliselt valguse sagedusega ja ei sõltu valguse i...

Füüsika → Füüsika
38 allalaadimist
thumbnail
2
docx

Valguslaine, difraktsioon, interferents

1. Kirjelda valguslainet. - Valgus on elektromagnetlaine (elektri + magnetväli) - Eetrit pole vaja - Valguskiirusel - Iseloomustavad suurused: lainepikkus, sagedus, periood ja kiirus - Muutuv elektriväli tekitab muutuva magnetvälja, muutuv magnetväli tekitab omakorda muutuvad elektrivälja 2. Mida nimetatakse valguse difraktsiooniks? Nähtust, kus lained kanduvad tõkete taha. Esineb ka siis, kui lained läbivad tõketes olevaid avasid. 3. Miks ei ole difraktsioon jälgitav suurte mõõtmete korral? Millal on difraktsioon jälgitav? Selleks, et jälgida valguslainete difraktsiooni, ei või avad (või ka tõkked) olla 0,001 mm'st (valguse lainepikkus on väiksem kui 0,001 mm) palju suuremad. Hästi jälgitav difraktsioon ilmneb siis, kui ava laius on võrdne 2-5 lainepikkusega. 4. Kirjelda tüüpilist difraktsioonipilti. Pilt tekib triibulistest mustadest triipudest ja valgetest triipudest. Need on põhjus...

Füüsika → Füüsika
22 allalaadimist
thumbnail
6
docx

Valgus ja valguse levimine

Valgusallikas -Valgusallikas on keha, mis on nähtav ruumi valgustusest sõltumata ja mis ise valgustab teda ümbritsevaid kehi. Valgusallikad jagatakse a.Soojuslikud – Annavad lisaks valgusele ka soojust. Näit:päike, tuli, küünal, lõke, hõõglamp, äike b. Külmad - Annavad valguse kõrval vähe soojust. Näit:päevavalguslamp, jaaniuss, televiisori ekraan, virmalised 1)Mis näitab, et valgusel on energiat? Et valgusel on energiat, seda näitab ka värvide pleekumine valguse käes. 2)Mida nimetatakse valgusallikaks? Valgusallikaks nimetatakse valgust kiirgavat keha. 3)Miks valgusallikas vajab energiat? Valgusega kandub energia ümbritsevasse ruumi, sellepärast tuleb valgusallikale anda energiat. 4)Milline osa valgusest võimaldab esemeid näha? Valgust, mis tekitab valgusaistingu, ja seda nimetatakse nähtavaks valguseks. 5)Kuidas...

Füüsika → Füüsika
21 allalaadimist
thumbnail
6
docx

Vaatlusaruanne

Tartu Kutsehariduskeskus Ärindus- ja kaubandusosakond Sirli Lepik "AS OG ELEKTRA KPL ,,RAJA Vaatlusaruanne Juhendaja Lidia Feklistova ja Maiki Uusküla Tartu 2014 Sirli Lepik Sisukord 2 Sirli Lepik SISSEJUHATUS Mina tegin vaatlusaruande poest, mis asub Ilu pst 2 Rakveres. Pood on avatud E-P: 9.00-22.00. Valisin just selle poe, kuna mulle Rakvere kodus suhteliselt lähedane pood .ning olen ka seal töötanud Tegevusvaldkonnaks saab lugeda jaemüüki, Poe plussideks saab lugeda, et see on inimestele suhteliselt lähedal ja saavad oma esmatarbe kaubad sealt samast kätte ei pea minema selle jaoks kesklinna. Poe kaubavalik on pidevalt uuenev, ses...

Majandus → Kaubandus
13 allalaadimist
thumbnail
36
pdf

VALGUS

3. VALGUS 3.1. Valgusallikad Valgusallikad ja soojusallikad. Miks on taevatähed erineva värvusega? Kas Kuu on valgusallikas? Valgusallikad kiirgavad valgust, kõik teised esemed on vaid valgusallikatest neile langenud valguse peegeldajad. Kui toas on pime, paneme tule põlema. Nii me ütleme. Tegelikult me tuld ei tee, vaid lülitame sisse valgusallika, milleks on enamasti kas laua-, lae- või põrandalamp. Lülitile vajutamisel tekib lambis elektrivool, mis põhjustabki valguse kiirgumist. Kodus kasutame tavaliselt hõõglampe, koolis aga ena- masti päevavalguslampe. Vaatlus ja arutlus: hõõglamp • Silmitse tähelepanelikult oma laualambi pirni, kui see ei põle. Kas näed hõõgniiti? Millise kujuga see on? Kui hõõgniit ei paista, siis on su lambis nn mattklaasiga pirn. Sellise lambipirni sisemisele küljele on kantud val- gust hajutava aine kiht. Kindlasti on aga klaaskesta sees metallist hõõgniit, kusjuures metalliks on volfram. Miks volf...

Füüsika → Füüsika
16 allalaadimist
thumbnail
2
docx

Optika

1.Valguse olemus (valguse dualism) Optika uurib valguse ja muude elektromagnetkiirguste olemust, tekkimist, levimist, mõju ainetele, kasutamist. Valguse olemuse kohta tekkis 17.saj kaks teooriat: 1)osakeste teooriat rajas Newton, seda asendasid Planck, Einstein. 2)Laineteooriale pani aluse Huygens, edasi arendasid Young, Maxwell. Tänapäeval kujutleme valgust dualistliku nähtusena: Levimisel elektromagnetlainetusena ainetega kokkupuutel osakeste voona. Newton nim. valgusosakesi korpuskulaarideks, tänapäeval valguskvant ehk footoniteks. Jaguneb laine-ja kvantoptikaks. 2.Valguse kiirus On kõige suurem tühjuses ja see on C=300 000km/s. Esimesena püüdis valgusekiirust mõõta Galileo Galilei, kuid ei õnnestunud. Mida väiksem on valguse kiirus keskkonnas, seda optiliselt tihedamaks loetakse keskkonda. 3.Geomeetriline optika (valguskiir) Valguse levimise suuna kujutamiseks on kasutusele võetud valguskiire mõiste. Valguskiirt kujutatakse joon...

Füüsika → Füüsika
13 allalaadimist
thumbnail
22
pptx

Laserid

Laserid Meelika Spriit 12 c Mis on laser? seade, mis tekitab intensiivseid valguskimpe Valgusgeneraator Seade , mis võimendab kiiratud valgust Laseri üldskeem Ergasti Kiirgur (aktiivaine) Laserikiir Läbipaistmatu Poolläbipaistev Resonaator (peeglipaar) 3 Laserite ajalugu Click to edit Master text stylesUSA füüsik Second level Theodore Maiman Third level Fourth level (s. 1927) ehitas Fifth level esimese töötava laseri, milleks oli sünteetilisest ...

Füüsika → Füüsika
68 allalaadimist
thumbnail
2
docx

Alumiinium, kuld, elavhõbe, vask, plii,magneesium, raud, tina, hõbe paar küsimust ja vastust

Alumiinium 1.Alumiiniumi kasutusalad-Peeglites, oma hea peegeldumise tõttu, foolium, juhtmed. 2. Alumiiniumi füüsikalised omadused-Hõbevalge värvus, kergmetall, hästitöödeldav 3.Millest alumiiniumi tööstuslikult toodetakse. Nimeta üks alumiiniumi sulam-Boksiidist. Magnaalium(lehtmetall, cocacola purgid jne) 4.Veeaur+Alumiinium- Al+3H2O >2Al2O3+3H Kuld 1. vastused: 1) kuld on väga pehme väärismetall, kollaka värvusega, hea soojus ja elektrijuhtija - füüsikalised om 2) kuld ei reageeri peaaegu millegiga peale 1 happe ( seleenhape) ja kuningveega- keemilised om 3) Kuningvesi on konsetreeritud HCl : konsetreeritud HNO3( 3:1) 4) Kulda leidub kõige rohkem USAs, liskas sellele Venemaal, väheses koguses inimeses 5) kasutusalad raha, juveelid jne Elavhõbe 1.Milline on elavhõbeda kahjutuks tegemise reaktsioon?- Hg + S > HgS 2.Millises ühendis esineb elavhõbedat looduses- Elavhõbe sulfiid 3.Millised on elavhõbeda k...

Keemia → Keemia
12 allalaadimist
thumbnail
6
docx

Tahke keha füüsika kontrolltööks kordamine konspekt

1.Tahke keha füüsika Aatomeid seob molekulideks ja kristallideks keemiline side, mille põhiliigid on ioon- ja kovalentsside. Ioonside tekib positiivsete ja negatiivsete ioonide vahel. Kovalentsside tekib elektronpaaride ühistamisel. Kristallid on makroskoopilised hiidmolekulid, milles aatomid või ioonid on paigutanud korrapärasesse ruumvõresse. Tahke keha omadusi saab uurida, kui on teada Fermi nivoo asukohta. 1.1 Ioonilisesideme teke Iooniline side- üks aatom võtab teiselt elektroni ära, iooniline side moodustab kristalli, kuna struktuur võib jätkuda lõpmatuseni. Positiivsete ja negatiivsete ioonide vahel tekib tõmme, mis seostab ioonilise sideme. Kloor tõmbab naatriumi elektroni, et ma pilve aatom oleks ühtlasem ja energia väiksem. 1.1.1 Kristallid Aatomid/ioonid on paigutatud kindlas korras, moodustades ruumvõre . Võre konstandi saab määrata lainepikkuse kaudu. Kristallides on aatomid paigutatud väga tihedalt. Kristallide difrakt...

Füüsika → Füüsika
3 allalaadimist
thumbnail
21
doc

Elektritingmärgid

ELEKTRITINGMÄRGID Koostaja: Raivo PÜTSEP TALLINN 2006 SISUJUHT 1. ELEKTRISKEEMIDEST ........................................................................................................................................ 3 2. ELEKTRISKEEMIDE LIIGITUS...........................................................................................................................3 2. ELEKTRISKEEMIDE TINGMÄRKIDE MÄÄRATLUSED.................................................................................4 3. ÜLDTINGMÄRGID................................................................................................................................................6 4. JUHTMED, KAABLID JA LIINID .........................................................................................................................6 5. ÜHENDUSED JA KLEMMID. MAANDUS JA POTENSIAALI- ÜHTLUSTUS.......................

Tehnika → Elektrotehnika
239 allalaadimist
thumbnail
2
docx

Laboritöö küsimuste vastused

1. Milles seisneb valguse difraktsiooni nähtus? Difraktsiooni nähtust on võimalik kasutada valguse lainepikkuse määramisel. Kui valguse teele asetatavasse plaati lõigata pikad omavahel paralleelsed ja üksteisest võrdsetel kaugustel asuvad pilud (umbes 100 või enam pilu ühel millimeetril) moodustub seade mida nimetatakse difraktsioonivõreks. 2. Kas diraktsioon kuulub valguse laine- või korpuskliteooriasse? Difraktsioon on hästi jälgitav tõkete korral, mille laius on samas suurusjärgus valguse lainepikkuseg 3. Kas difraktsioon eeldab valguse koherentsust? Mis see üldse on? Kuna vaadeldavad valguskiired pärinevad koherentsetest valgusallikatest, siis nende kohtumisel leiab aset valguse interferents, mille tulemuseks võib olla kas valguse intensiivsuse kasv või kahane-mine. Kui mõnelt eemal asuvalt monokromaatselt valgusallikalt jõuab valgus difraktsioonivõrele, siis muutub i...

Ökoloogia → Ökoloogia
115 allalaadimist
thumbnail
8
docx

Televisiooni-, video- ja helitehnika I kordamisküsimused eksamiks

Televisiooni-, video- ja helitehnika I kordamisküsimused eksamiks 1. Heli: a. Mis on heli füüsikalised omadused? Sagedus(20-20000Hz umbes), õhurõhu muutumine õhus ehk helirõhk(muutumisel muutub heli), levimiskiirus(Õhus – 343m/s;Vees – 1482 m/s;Terases – 5960 m/s) b. Mis sagedustel helisid inimesed kuulevad? 20-20000 Hz c. Mis on heli puhul madalad, keskmised ja kõrged sagedused? 20-200 Hz madalad, 200-4000 Hz keskmised, 4000-20000 Hz kõrged d. Kuidas nimetatakse inimesele mitte kuuldavaid helisid ja kus/milleks neid helisid kasutatakse? Infraheli on alla 20 Hz, ultraheli on üle 20000 Hz;Infraheli – seismoloogia;Ultraheli – ultraheli uuringutes(meditsiin) 2. Heli levimine: a. Kuidas heli levib? Heli levib lainetena, helina tajub inimene õhurõhu muutumist b. Mis kiirusel heli levib? Mis mõjutab heli levimise kiirust? Õhus – 343m/s;Vees – 1482 m/s;Terases – 5960 m/s;Heli levimise kiirust mõjutab keskkon...

Tehnika → Tehnikaajalugu
4 allalaadimist
thumbnail
14
docx

Referaat Valgusdioodid

Sisekaitseakadeemia Päästekolledz ................ ........... VALGUSDIOODID Referaat Õppejõud: ..................... Tallinn 2014 SISUKORD SISUKORD.....................................................................................................................................1 SISSEJUHA...

Füüsika → Füüsika
4 allalaadimist
thumbnail
2
doc

Jaanimardikas

Jaanimardikad, keda meil ka jaaniussideks kutsutakse, on võimelised kiirgama valgust, mis on palju tõhusam inimeste leiutatud säästulampide omast. Suurema osa elust veedab jaanimardikas röövelliku vastse kujul. Enne kui ta täiskasvanud mardikaks muutub, sööb väiksemaid limuseliike. Suguküpseks saades jaanimardikad enam ei söö. Nad otsivad endale partneri, paarituvad ning varsti pärast seda hukkuvad. ELUVIIS Heledat kollakasrohelist valgust kiirgavad nii emased kui isased, mõningatel liikidel ka vastsed. Valgus tekib keemilise reaktsiooni tulemusena ­ lutsiferiiniks kutsutava aine oksüdeerumisel. See aine peitub külgedel ja tagakeha kolme viimase lüli tipul paiknevates helenduselundites. Valgusreaktsiooni tekkeks vajavad jaanimardikad hapnikku, vett, lutsiferiini ja erilist, lutsiferaasiks kutsutavat ensüümi. Oma valguse kustutamiseks katkestab jaanimardikas hapniku juurdepääsu helenduselunditele. Keemiline reaktsioon on äärmiselt tõhu...

Bioloogia → Bioloogia
15 allalaadimist
thumbnail
3
doc

Elektrmagnetvõnkumine

Füüsika Võnkering- vabade elektromagnet võnkumiste tekitaja. mis koosneb induktiivpoolist(vanemates õpikutes nimetatakse ka induktsioonpool) ja kondensaatorist ja neid ühendavatest juhtmetest. Võnkumisi iseloomustavad suurused magnetvälja energia, elektrivälja energia, kondensaatori mahtuvus, induktiivsus. Võnkumiste tekitamiseks lülitatakse võnkeringi kondensaatori külge korraks ka alalisvooluallikas. Analoogiline süsteem on mehaanikas vedrupendel, kus võnkumiste tekitamiseks on vaja vaid pendel tasakaaluasendist välja viia ja siis lahti lasta.. 1.Kondensaator laetakse välise vooluallika abil ja erimärgiliselt laetud plaatide vahele tekib elektriväli. 2.Vooluallikas kõrvaldatakse ja laetud kondensaator ühendatakse juhtmetega läbi induktiivpooli, misjärel kondensaator hakkab tühjenema läbi induktiivpooli ja kondensaatori elektrivälja energia muundub poolis voolu magnetvälja energiaks. 3.Nüüd la...

Füüsika → Füüsika
32 allalaadimist
thumbnail
3
rtf

Aatomikooslused. Laserid

1. Ioonside - Positiivsete ja negatiivsete ioonide vahel tekib tõmme, mis neid koos hoiab. Näiteks NaCl-s Na on ära andnud oma välise elektroni Cl-le. Kovalentne ehk homeopolaarne side - Kummaltki ühinevalt aatomilt ühistatakse üks elektron vastasspinnidega elektronpaaridest. Näiteks H2 moodustamisel ühistatakse kummagi aatomi 2 elektroni. 2. Metalli aatomis on kõrgeimal hõivatud energiatasemel ainult üks elektron. Tõrjutusprintsiip lubab tsooni igale alatasemele asuda kahel vastassuunaliste spinnidega elektronil, seetõttu jääb kõrgeim hõivatud tsoon pooleni täidetuks. Selle tsooni elektronid moodustavad liikumisvõimelise elektrongaasi. 3. Kristallis olevate aatomite elektronkatete väliselektronide tasemed paisutab aaatomite elektriline vastastikõju laiadeks energiatsoonideks. Kehtima jääb energia miinimumprintsiip koos Pauli tõrjutusprintsiibiga. 4. Keelutsoon - Vahemik, milles elektronid ei saa omandada energiad nende laineomaduste...

Füüsika → Füüsika
154 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun