Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

"-umbrus" - 8 õppematerjali

thumbnail
13
pdf

Matemaatiline analüüs 2 Küsimused vastustega

1. Sõnastada m-mõõtmeline ruum. Kaugus m-mõõtmelises ruumis. 2. Defineerida punkti P Rm -¨umbrus, rajapunkt, sisepunkt, hulga raja. 3. Defineerida lahtine/kinnine hulk, lahtine/kinnine kera. 4. Sõnastada m-muutuja funktsioon, m-muutuja funktsiooni määramispiirkond, m-muutuja funktsiooni muutumispiirkond, funktsiooni graafik. +muutumispiirkond +graafik 5. Nivoojooned, nivoopinnad. 6. Sõnastada kuhjumispunkt, m-muutuja funktsiooni piirväärtus, m-muutuja funktsiooni korduvad piirväärtused. 8. m-muutuja funktsiooni pidevus. m-muutuja funktsiooni katkevuspunkt. Pidevuse tarvilik ja piisav tingimus. 9. Sõnastada m-muutuja funktsiooni osatuletis. 10. Kahe muutuja funktsiooni osatuletise geomeetriline tähendus. 11. Pinna puutuja, puutujatasand, normaal. Tuletada puutujatasandi võrrand. +tuletamine 12. Kõrgemat järku osatuletised. Segaosatuletised. 13. Näidata, kui funkts...

Matemaatika → Matemaatiline analüüs 2
22 allalaadimist
thumbnail
4
odt

Matemaatiline Analüüs I kollokvium spikker

1. Norm ja kaugus (meetrika). Ümbrused. ε-ümbruse definitsioon. Reaalarvu ühepoolsed Lõpmata väikeseid (suuri) suurusi α(x) ja β(x) piirprotsessis x → a nimetatakse ekvivalentseteks ümbrused. Lõpmatuse ümbrused selles piirprotsessis, kui Normiks vektorruumis V nimetatakse reeglit, mis igale vektorile u ∈ V seab vastavusse skalaari || 8. Funktsiooni pidevus punktis. Uhepoolne pidevus. Katkevuspunktide liigid. u|| ∈ R, kusjuures on taidetud järgmised tingimused: Funktsiooni f(x) nimetatakse pidevaks punktis a, kui on taidetud kolm tingimust: 1 ∀u ∈ V ||u|| >= 0; ||u||= 0 ⇔ u = Θ 1) ∃f(a); 2) ∃ limx→a f(x); 3) limx→a f(x) = f(a). Tahistatakse f(x) ∈ C(a) 2 ∀u ∈ V, α ∈ R ||αu|| = |α|||u|| ...

Matemaatika → Matemaatiline analüüs
73 allalaadimist
thumbnail
2
odt

Matemaatiline analüüs I, II kollokviumi spikker

11. Kumerus, nõgusus, käänupunktid. Seos teist järku tuletisega. Funktsiooni diferentsiaal on kõverjoonele y = f(x) tõmmatud puutuja ordinaadi muut, mis vastab Oeldakse, et funktsiooni f(x) graafik on kumer punktis a (tapsemini punktis (a, f(a))), kui leidub punkti a argumendi numbrile x=dx. selline -umbrus, et funktsiooni f(x) graafik on argumendi x väärtustel ümbrusest (a - , a + ) allpool 2. Funktsiooni kõrgemat järku tuletised. (tapsemini, mitte ulalpool) puutujat, mis on tõmmatud punktis (a, f(a)) funktsiooni graafikule. Oeldakse,

Matemaatika → Matemaatiline analüüs
33 allalaadimist
thumbnail
11
docx

Maateaduste alused II 2.kontrolltöö

· Ohutemperatuur ja selle mootmine, temperatuuriskaalad- Valjendab soojusenergia hulka ohus ja maapinnas. Moodetakse meteoroloogilises onnis 2 m korgusel varjus, mootuhik kraad. °C (Celsius) ­ vesi kulmub 0°C, keeb 100°C K (Kelvin) ­ vesi kulmub 273K, keeb 373K °R (Reaumur) ­ vesi kulmub 0°R, keeb 80°R °F (Fahrenheit) ­ vesi kulmub 32°F, keeb 212 F · Maalahedase ohukihi temperatuuri inversioon- Maapinnast 300m korguseni temperatuur touseb ja hakkab sealt edasi uhtlaselt langema. Kuid vahetult maapinna lahedal asub jahtunud ohukiht, milles temperatuur langeb maapinna suunas kuni -1 celsiuseni . inversiooniks nimetatakse olukorda kui korgus kasvades temp touseb. · Iseloomustada mulla, maapinna ning maalahedase ohukihi temperatuuri vertikaalse profiili muutusi parasvootme suvepaeva jooksul-ohutemp ööpaevane koikumine suureneb tunduvalt maapinna lahedal. Mulla, maapinna ja maalahedase ohukihi temp jarjest kasvab paevajooksul, kuni saavu...

Geograafia → Maateadused
9 allalaadimist
thumbnail
1080
pdf

Matemaatiline analüüs terve konspekt

¨ Piirva¨ artuse ¨ omadusi Lause Konstantse funktsiooni piirva¨ artuseks ¨ on see konstant, st. x X (f (x) = c) = lim f (x) = c. xa Lause Kui funktsioonil f (x) leidub piirva¨ artus ¨ punktis a, siis leidub punkti a selline -umbrus, ¨ ~ et funktsioon f (x) on tokestatud hulgal (a - , a + ) {a}. Lause xa xa Kui f (x) - b ja g(x) - c ning leidub punkti a selline -umbrus, ¨ et f (x) g(x) iga 0 < |x - a| < korral, siis kehtib vorratus ~ b c. ¨ G

Matemaatika → Matemaatiline analüüs 1
136 allalaadimist
thumbnail
64
pdf

Kolokvium 1 materjal

TTU¨ Matemaatikainstituut http://www.staff.ttu.ee/math/ Ivar Tammeraid http://www.staff.ttu.ee/itammeraid/ ¨ US MATEMAATILINE ANALU ¨ I Elektrooniline ~oppevahend Tallinn, 2001 Tr¨ ukitud versioon: Ivar Tammeraid, Matemaatiline anal¨ uu ¨ Kirjastus, ¨s I, TTU Tallinn 2001, 227 lk, ISBN 9985-59-289-1 ¨ Raamatukogu Viitenumber http://www.lib.ttu.ee TTU ~opikute osakonnas 517/T-15 c Ivar Tammeraid, 2001 Sisukord 0.1. Eess~ ona K¨aesoleva ~ oppevahendi aluseks on autori poolt viimastel aastatel Tallinna Tehnika¨ ulikoo- lis bakalaureuse~ oppe u ¨li~ opilastele peetud u ¨he muutuja funktsiooni diferentsiaal- ja inte- graalarvutuse loengud nimetuse "Matemaatiline anal¨ uu¨s I" all. Siiski ei ole tegu pelgalt u ¨hel semestri...

Matemaatika → Matemaatiline analüüs
65 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

Matematiline analüüs l. Jaan Jaano 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Reaalarvu a vasakpoolseks ümbruseks...

Matemaatika → Matemaatiline analüüs
484 allalaadimist
thumbnail
204
pdf

Topoloogilised ruumid

¨ TALLINNA TEHNIKAULIKOOL MATEMAATIKAINSTITUUT Peeter Puusemp TOPOLOOGILISED RUUMID Loengukonspekt Tallinn 2003 SISUKORD Eess˜ona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 TOPOLOOGILINE RUUM . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Topoloogilise ruumi definitsioon . . . . . . . . . . . . . . . . . . . 6 1.2 Topoloogilise ruumi baas . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Kinnised hulgad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 ¨ 1.4 Ulesandeid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 ¨ 2 UMBRUSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Punkti u ¨mbruste s¨ usteem . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Topoloogia m¨a¨a...

Matemaatika → Matemaatiline analüüs 2
11 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun