Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

"-teoreemi" - 321 õppematerjali

thumbnail
1
docx

Siinus Teoreemi tõestamine

Teoreem: Kolmnurga küljed on võrdelised vastasnurkade siinustega.Kehtivad võrdused: . Eeldus: On antud ABC, küljed a,b,c ja küljed ,,. Väide: =2R Tõestus: 1)Avaldame ABC pindala kolmel erineval viisil: Sabc=absin ; Sabc=bcsin ; Sabc=acsin Pindala väärtus valitud valemist ei olene : Sabc=absin = Sabc=bcsin ?= Sabc=acsin |: Absin=bcsin=acsin | : abc = Kui arvud on võrdes on võrdsed ka nende pöördarvud: 2) Näitan, et = 2R 1. Joonestan tipust C diameetr CD=d=2R 2. Ühendan punktid B ja A 3. D=A= 4. Saan DBC=90kraadi 3)ABC: sin= ja saan 2R= (võrde välisliikmeid võib vahetada)

Matemaatika → Matemaatika
5 allalaadimist
thumbnail
1
doc

Pythagorase teoreem

Pythagorase teoreem Täisnurkse kolmnurga hüpotenuusi ruut on võrdne kaatetite ruutude summaga. Esmalt tõestame seda nii nagu tegi Eukleides oma raamatus "Elemendid." Vastavlalt Eukleidese teoreemile on ja Liites need kokku saame, et Kellele võib olla see sarnaste kolmnurkade ja teise teoreemi kaudu tõestamine ei sobi, siis all on ka natuke teistsugune tõestus. Olgu meil antud ruut küljepikkusega . Selle ruudu pindala avaldub kujul . Konstrueerime ruudu A+B sisse veel ühe ruudu külepikkusega C. Selle ruudu pindala avaldub siis kujul . Avaldame nüüd selle ruudu pindala läbi ruudu A+B pindala ehk , kus on täisnurkse kolmnurga pindala. Lahti kirjutatult saame siis, et . Viimane 2AB tekkis sellest, et . Koondame vastavad liikmed ja saamegi,

Matemaatika → Matemaatika
36 allalaadimist
thumbnail
4
odt

Pythagorase teoreem

1. Pythagorase teoreem Pythagorase teoreemi sõnastus: täisnurkse kolmnurga kaatetite ruutude summa võrdub hüpotenuusi ruuduga. c²=a²+b² 1.1 Pythagorase ''püksid'' Pythagorase teoreemi väljendavas võrduses võib vaadelda suurusi a², b², c² kui selliste ruutude pindalasid, mille kylgedeks on a, b ja c. Seoses sellega võib pythagorase teoreemi sõnastada ka järgmiselt: täisnurkse kolmnurga kaatetitele joonestatud ruutude pindala summa on võrdne hüpotenuusile joonestatud ruudu pindalaga. 1.2 Kasutamine 1.2.1 Täisnurkne kolmnurk c²=a²+b² c= a2+b2 a²=c²-b² a= c ²-b ² b²=c²-a² b= c ²-a ² 1.2.2 Ruut d²=a²+a²=2a² d= 2 a2 a²+a²=d² 2a²=d² | :2 2 a²= d 2 a= d 2 2 1.2.3 Ristkülik d²=a²+b² d= a2+b2 b²=d²-a² b= d ²-a² a²=d²-b² a= d ²-b ² 1.2.4 Võrdhaarne kolmnurk 2 b²=h²+ ( a ) 2 2 b= h2+( a ) 2 ...

Matemaatika → Matemaatika
104 allalaadimist
thumbnail
1
docx

Matemaatika ülesanne

Ülesanne Laualamp laseb valgust pastaka peale, mis seisab topsis. Kui kõrge on tops, kui teame, et tops on pool pastaka kõrgusest ja pastaka vari on 12 cm ning pastakas on sarnane teise pliiatsiga tema kõrval, mille vari on 8 cm ja pikkus 6 cm. Leian kesklõigu: 12 : 8 = 1,5 Korrutame kesklõigu pliiatsi kõrgusega, et leida pastaka kõrguse: 1,5 x 6 = 9 (cm) Kuna teama, et topsi kõrgus on pool pastaka kõrgusest , siis võima arvutada: 9 : 2 = 4,5 (cm) Vastus: Pastakatopsi kõrguseks on 4,5 sentimeetrit.

Matemaatika → Matemaatika
10 allalaadimist
thumbnail
3
pdf

Kineetilise energia teoreemi kodutöö

Ko*g 4),t2qt N 45824 ANI", L;Ju, v,(r) = ,? fnn=40 K& a(r)-.t Yh{- 2. t(g }trr: 2.t4g I,,= 0r44n l:0145h (: o,4d r!' U= 0rl 5* otr Fvx,gnrurwrvAfts (orrio^.1 [,*].t'.. &^rya f-" t.,.' T:T" ' = IV AlrItt) dd$'- .f''''nJ" ->-To=o #-r^ 041-^^fl ["*-*]' %aw ]"9-']- ]-%" ^***"4 .t l...

Mehaanika → Dünaamika
39 allalaadimist
thumbnail
7
pptx

Pythagorase teoreem

Pythagorase teoreem Autor: Maris Rannaveer Juhendaja: Ivi Madison Pythagoras Pythagoras (umbes 580 eKr - 500 eKr) oli vanakreeka filosoof ja matemaatik, pütagoorlaste koolkonna rajaja. Ta oli esimene idealistlik Kreeka filosoof. Sündis saarel nimega Samos. Talle on omistatud Pythagorase teoreemi tõestamine, kuid peetakse tõenäoliseks, et selle teoreemi tõestas tegelikult mõni hilisem pütaagorlane. Teoreem ise ­ täisnurkse kolmnurga kaatetitele ehitatud ruutude pindalade summa võrdub hüpotenuusile ehitatud ruudu pindalaga ­ oli tuntud juba ammu enne teda Babüloonia ja Egiptuse matemaatikas. Näited Click to edit Master text styles Second level Third level Fourth level Fifth level Click to edit Master text styles Second level Third ...

Matemaatika → Matemaatika
15 allalaadimist
thumbnail
1
docx

Korrapärase nelinurkse püramiidi täispindala Pythagorase teoreemi abil

Korrapärase nelinurkse püramiidi täispindala Pythagorase teoreemi abil Alustuseks selgitan mis asi üldse on Pythagorase teoreem: Pythagorase teoreemi põhimõte kehtib vaid täisnurkse kolmnurga juhul. Sõnastus on lihtne: hüpotenuus võrdub kaatetite ruutude summa ruutjuurega, seega hüpotenuusi ruut võrdub kaatetite ruutude summaga (a ruudus+b ruudus=c ruudus). Näiteks, kui täisnurkse kolmnurga kaatetid (kaks lühemat külge) on 3 ja 4 siis peab hüpotenuus võrduma 5-ga. 0 Vaja on vaid aluskülge ja püramiidi kõrgust. 0 Olgu aluskülg a ja kõrgus H. 0 Arvutame põhja pindala (a ruudus (näiteks 4cm ruudus võrdub 16 ruutsentimeetrit)) 0 Arvutame külgpindala Pythagorase teoreemi abiga. (Sk=m*P, P=4a), sest nurk m-i ja H vahel on täisnurkne (m on põhikülje keskpunkti kaugus püramiidi tipust). 0 Pythagorase teoreem: H ruudus+a ruudus=m ruudus. 0 Külgpindala valem on P*m, seega kui hetkel oleks a=4cm, H=3cm, siis m=...

Matemaatika → Matemaatika
76 allalaadimist
thumbnail
9
docx

Operaatori μx(n 1) abil (*)-arvutatavatest funktsioonidest saadud funktsioonide (*)-arvutatavus

Operaatori abil (*)-arvutatavatest funktsioonidest saadud funktsioonide (*)-arvutatavus Tallinn 2014 Sissejuhatus Käesolevas referaadis keskendume operaatori abil saadud funktsioonide (*)-arvutatavusele, need funktsioonid on osaliselt rekursiivsed. Selleks, et uurida selliseid protsesse toome sisse vajalikud mõisted ja definitsioonid ning tõestame lemma, mis tõestab, et (*)-arvutatavatest funktsioonidest operaatori abil saadud funktsioonid on samuti (*)-arvutatavad. Anname ka sellise teoreemi tõestamise idee, mis ütleb, et iga osaliselt rekursiivne funktsioon on Turingi mõttes arvutatav ehk antud juhul (*)-arvutatav. 1. Osaliselt rekursiivsed funktsioonid. Operaatori µ abil saadud funktsioonide (*)-arvutatavus. Enne põhiosa juurde asumist toome sisse mõned vajalikud definitsioonid. Definitsioon 1.1. ([1], 9) Algfunktsioonideks nimetatakse järgmisi naturaalarvulisi funktsioone: Funktsioone n...

Matemaatika → Matemaatiline loogika ja...
12 allalaadimist
thumbnail
2
doc

Defineerimine ja tõestamine

Defineerimine ja tõestamine Raudvara 1. Hulgad Kui kahes hulgas A ja B on ühiseid elemente, siis need elemendid moodustavad hulkade A ja B ühisosa. Sümbolites: A B Näide: Olgu meil hulgad A = {1;5;7;4} ja B = {5;7;6}, siis A B = {5;7} Kui x A B, siis see tähendab x A ja x B. Sümbolites: x A x B Moodustades kahest hulgast A ja B uue hulga, millesse kuuluvad kõik hulga A ja B elemendid kordusteta saame hulkade A ja B ühendi. Sümbolites: A B (hulkade A ja B ühend) Näide: Olgu meil samad hulgad A ja B, siis A B ={1;4;5;6;7} Kui x A B, siis see tähendab, et x A või x B. Sümbolites: x A x B - kuuluvuse märk - ühisosa märk - sidesõna ,,ja" - ühendi märk - sidesõna ,,või" - 2. Defineerimine Defineerimiseks nimetatakse mõiste seletust või küsimusele vastuse andmist. Algmõisteid ei defineerita, me teame selle nende tähendust. Algmõisted on näitek...

Matemaatika → Matemaatika
12 allalaadimist
thumbnail
2
docx

Raudvara: defineerimine ja tõestamine

Raudvara: defineerimine ja tõestamine 1.hulkade ühisosa ja ühend. Hulka B kuuluvad elemendid: h,i,j,k,l,X,Y. elemendid X ja Y on hulkade A ja B ühisosa: ja märk tähendab sõna ,,ja". Hulka Akuuluvad elemendid: c,d,e,f,g,X,Y. Kulkade A ja B ühendi moodustuvad kõik elemendid, mis kuuluvad nendesse hulkadesse: c,d,e,f,g,h,i,j,k,l,X JA Y. Kuna hulgad A ja B on geomeetrilised kujundid, mis asetsevad tasapinnal, võib nende kohta öelda ka punktikulk 2. Defineerimine. Mõistete seletamist lihtsamate ja tuntumate mõistete abil nimetatakse mõiste defineerimiseks ja mõiste seletust nimetatakse definitsiooniks. Mõisteid mida ei ole vaja defineerida ning nende tõesuse üle ei saa vaielda nimetatakse algmõisteteks. Algmõisted on näiteks: punkt, sirge, tasand, ruum jne. Mõitet defineeritakse mõiste eritunnuse kaudu. Näiteks ruudu definitsiooni: ruut on nelinurk, mille kõik nurgad ja küljed on võrdsed eritunnus ...

Matemaatika → Matemaatika
23 allalaadimist
thumbnail
3
docx

Defineerimine ja Tõestamine

Raudvara ptk.3 Defineerimine ja tõestamine Hulkade ühisosa ja ühend Kui kahes hulgas on ühiseid elemente, siis öeldakse, et need elemendid moodustavad hulkade ühisosa. A = {a; b; c; d; e} B = {c; d; e; f} Hulkade A ja B ühisosa on c, d ja e. Ühend on kahe hulga kõik elemendid kokkupandult. A = {a; b; c; d; e} B = {c; d; e; f} Hulkade A ja B ühend on a, b, c, d, e ja f. Defineerimine Defineerimine on mõiste lahti seletamine võimalikult täpselt ja lühidalt. Algmõiste ­ Ei defineerita, aga teame. Mõisted ­ Defineerime algmõiste abil. Teoreem Kui mingi lause tõesust saab matemaatikas põhjendada varem teada olevate tõdede abil, siis nimetatakse seda lauset teoreemiks. Lauseid, mida pole küll keegi tõestanud, kuid mille tõesuses pole põhjust kahelda, nimetatakse aksioomideks. Teoreemi tõesuse põhjendamist nimetatakse tõestamiseks. Teoreemi eeldus ja ...

Matemaatika → Matemaatika
28 allalaadimist
thumbnail
15
ppt

Defineerimine ja tõestamine. Planimeetria elemente.

Defineerimine ja tõestamine. Planimeetria elemente. Kordamine Matemaatika 8.klass Rita Punning Krootuse Põhikool Kordavad teemad ehk millest täna räägime: Defineerimine, teoreem, eeldus, väide, pöördteoreem; Kõrvu-, tipp-, kaas-, põik-, lähisnurgad; Sirgete paralleelsus; Rööpkülik, kolmnurk; Kolmnurga ja trapetsi kesklõigud; Kolmnurga mediaanid. 2 Defineerimine Mõiste täpset ja lühidat määratlemist nimetatakse selle mõiste defineerimiseks. Mõisted, mida ei defineerita, nimetatakse algmõisteteks. Algmõisted näiteks punkt, sirge, tasand, ruum jne. Kas järgmised mõisted on korrektsed? Kolmnurga kõrguseks nimetatakse kolmnurga tipust tõmmatud lõiku. Rööpkülikuks nimetatakse nelinurka, mille vastasküljed on paralleelsed. ...

Muu → Ainetöö
14 allalaadimist
thumbnail
4
doc

Defineerimine ja tõestamine

RAUDVARA 3. PEATÜKK DEFINEERIMINE JA TÕESTAMINE 1. HULKADE ÜHISOSA JA ÜHEND *Kui kahes hulgas A ja B on ühiseid elemente, siis öeldakse, et need elemendid moodustavad hulkade A ja B ühisosa. Sümbolites : A B *Ühendi saame siis, kui võtame mõlemast osapooles olevad arvud või tähed. Märk tähendab sidesõna ,,ja" Märk tähendab ,,ühisosa" Märk U tähendab ,,ühend" Märk V tähendab sidesõna ,, või" 2. DEFINEERIMINE * Defineerimine ­ Küsimusele vastamine on mõistele definitsiooni andmine. * Algmõiste ­ Mõiste alguses olev mõiste. * Definitsioon ­ Annab täpse ja lühikese vastuse küsimusele ,,Mida nim?Mis on...? 3. TEOREEM * Kui mingi lause tõesust saab matemaatikas põhjendada varem teada olevate tõdede abil, siis nimetatakse seda teoreemiks. * ...

Matemaatika → Matemaatika
86 allalaadimist
thumbnail
9
pdf

8. klassi raudvara: PTK 3

3.ptk Defineerimine ja tõestamine 8.klass Õpitulemused Näited 1.Hulkade ühisosa - ühised elemendid; Ül.564 tähis ; NB tehe hulkadega 2.Hulkade ühend - hulk, millesse kuuluvad Ül.567 ühe hulga kõik elemendid ja teise hulga need elemendid, mis esimesse hulka ei kuulunud; tähis ; NB tehe hulkadega 3.Matemaatilised sümbolid - hulkade ühisosa matemaatikale iseloomulik hulkade ühend nn.kokkuleppeline keel, et teksti lühidalt element kuulub hulka kirja panna (võit ajas ja ruumis) element ei kuulu hulka sidesõna "ja" sidesõna "või" hulga osahulk, "ei ole osahulk" kriipsutatakse sama tähis läbi ...

Matemaatika → Matemaatika
96 allalaadimist
thumbnail
2
doc

8kl matemaatika mõisted

1Mis on üksliige? Üksliikmeks nimetatakse avaldist, kus on kasutatud ainult korrutustehet. 1Mis on hulkliige? Hulkliikmeks nimetatakse üksliikmete summat. 1Mis on tegurdamine? Tegurdamiseks nimetatakse avaldise teisendamist korrutiseks. 1Nimeta tegurdamise võtted 1)Teguri sulgudest välja toomine 2)Korrutise abivalemite kasutamine 3)Rühmitamisvõtte kasutamine 4)Ruutkaksliikme tegurdamine 1Mis on teoreem? Teoreem on lause, mida on vaja tõestada teada olevate tõdede põhjal. 1Mis on teoreemi eeldus? Teoreemi eeldus ütleb, mis on antud või teada. 1Mis on teoreemi väide? Teoreemi väide ütleb, mida saab eeldusest järeldada, ehk mida on vaja tõestada. 1Mis on kolmnurga kesklõik? Tee selgitav joonis. Sõnasta teoreem kolmnurga kesklõigust. Kolmnurga kesklõiguks nimetatakse lõiku, mis ühendab haarade keskpunkte ja on paralleelne kolmanda küljega. Teoreem: Kolmnurga kesklõik on paralleelne kolmnurga ühe küljega ja võ...

Matemaatika → Matemaatika
112 allalaadimist
thumbnail
3
docx

Matemaatika ajalugu ja lemmik matemaatik.

Matemaatika ajalugu Ja lemmik vanaaja matemaatik Riho Rannamäe 07.02.09 Toila gümnaasium Matemaatika on teadusharu, mis uurib mitmesuguseid hulki ­ arvuhulki, punktihulki ehk kujundeid, funktsioonihulki jms. Peatähelepanu ei osutata seejuures hulkade sisulisele tähendusele, vaid nende elementide seostele ja omadustele. Matemaatika on tekkinud eluliste vajaduste, näiteks aja- ja maamõõtmise, ehituse jms. nõudel. Nüüdisajal rakendatakse matemaatikat kõigil inimtegevuse aladelMatemaatika tekkejärk kestis 4. aastatuhandest 5. sajandini eKr. Sel perioodil sugenesid paljud praktilised, kuid veel süstematiseerimata eeskirjad mitmesuguste arvutuste sooritamise kohta (näiteks ...

Matemaatika → Matemaatika
19 allalaadimist
thumbnail
20
docx

Matemaatiline analüüs II kontrolltöö

Matemaatiline analüüs II kontrolltöö Punktid 23-45 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile?(Tõestada) Loetleda diferentsiaali omadused. a. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana b. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile?(Tõestada) c. Loetleda diferentsiaali omadused c.1. c.2. c.3. c.4. c.5. 24. Funktsiooni lokaalsete ekstreemumite definitsioonid.Sõnastada ja tõestada Fermat' lemma. a. Funktsiooni lokaalsete ekstreemumite definitsioonid a.1. Öeldakse, et funktsioonil f on punktis x lokaalne miinimum, kui ...

Matemaatika → Matemaatiline analüüs
122 allalaadimist
thumbnail
18
docx

Matemaatiline analüüs KT2 vastused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 kasutades mõisteid: x = x - a - argumendi muut kohal a y = f(x) - f(a) - funktsiooni muut kohal a . Näitasime, et Seega kui tähistame ja f'(a) vahe järgmiselt : Kehtib võrdus Püüame avaldada funktsiooni muutu y argumendi muudu x kaudu. Selleks avaldame kõigepealt võrdusest suhte ja korrutame saadud avaldise x-ga. Saame valemi Valemist näeme, et funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f(a)x ja teine on . Mõlemad liidetavad on lõpmatult kahanevad protsessis x 0. Võrdleme neid suurusi x suhtes. Esiteks, eelduse f(a) 0 põhjal saame : Teiseks kehtib valem :...

Matemaatika → Matemaatiline analüüs i
121 allalaadimist
thumbnail
1
docx

Pytharoras

Pytharoras Pythagoras elas aastatel 580 eKr ­ 500 eKr.Ta oli Vana-Kreeka filosoof ja matemaatik, pütagoorlaste koolkonna rajaja.Pythagoras määras helide arvsuhteid monokordi abil.Pythagoras oli antiikolümpiamängude kahekordne rusikavõitluse võitja.Ta ema oli Pythais Samoselt ja isa Mnesarchos, foiniikia kaupmees Tüürosest. Talle on omistatud Pythagorase teoreemi tõestamine, kuid peetakse tõenäoliseks, et selle teoreemi tõestas tegelikult mõni hilisem pütaagorlane.Teoreem ise ­ täisnurkse kolmnurga kaatetitele ehitatud ruutude pindalade summa võrdub hüpotenuusile ehitatud ruudu pindalaga ­ oli tuntud juba ammu enne teda babüloonia ja egiptuse matemaatikas. Ta oli arvatavasti Pherekydese õpilane ja sai mõjutusi Anaximandroselt. Ta lahkus Samoselt, sest talle oli vastuvõetamatu türann Polykratese valitsus, ning reisis tõenäoliselt Egiptuses ja Babüloonias. Püsivamalt elas ta Lõuna-Itaalias Krotonis, ...

Matemaatika → Matemaatika
6 allalaadimist
thumbnail
8
docx

Matemaatiline analüüs I 2. teooria KT vastused

TÕESTUSED, TULETUSKÄIGUD, PÕHJENDUSED!!! 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y = f'(a)x + , kus = r(x)x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). funktsiooni muut y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f'(a)x ja teine on . M~olemad liidetavad on l~opmatult kahanevad protsessis x 0. V~ordleme neid suurusi x suhtes. Esiteks, eelduse f'(a) 0 p~ohjal saame lim dy x= lim f'(a)/x* x= lim f'(a) = f(a) 0. x0 x0 x0 Teiseks kehtib lim / x = lim r(x)x /x = lim r(x) = 0. x0 x0 x0 N¨aeme, et esimene liidetav, so diferentsiaal dy on sama j¨arku l~opmatult kahanev suurus kui x ja teine liidetav on k~orgemat j¨arku l~opmatult kahanev suurus x suhtes. J¨arelikult v¨aikese x korral hakkab diferentsiaal funktsiooni muudu avaldises domineerima. Seet~ottu v~oime lugeda diferent...

Matemaatika → Matemaatika
47 allalaadimist
thumbnail
20
pdf

Geomeetria/Planimeetria.

KORDAMINE RIIGIEKSAMIKS VI teema Geomeetria PLANIMEETRIA Tasandilised kujundid ja nendega seotud valemid. Ristkülik d b S  ab P  2a  b  d  a2  b2 a a Ruut d S  a2 a P  4a d a 2 Rööpkülik d1  S  ah  ab sin  h b P  2a  b  d2      180 0 d1  d 2  2a 2  b 2  a ...

Matemaatika → Geomeetria
78 allalaadimist
thumbnail
1
docx

Matemaatika põhikooliriigieksam 2007 A variant

(3m-4n)²-3m(3m-7n)=9m²-24mn+16n²-9m²+21mn=16n²-3mn Leian avaldise täpse väärtuse, kui m=2/3 ja n=-0,5 16*(-0,5)²-3*2/3*(-0,5)=5 55%*20/100%=11 (ha) 2) 5 20st 5:20=0,25 0,25*100%=25% 3) 20-11-5=4 (ha) 4) 4 20st 4:20=0,2 0,2*100%=20% Olgu üks arv x ja teine x+7, nende arvude korrutis on 494, saan võrrandi x(x+7)=494 x²+7x-494=0 kasutan ruutvõrrandi lahendi valemit Leian teise arvu 19+7=26 Kontroll: Olgu üks arv 19 ja teine 7 võrra suurem 19+7=26, nende arvude korrutis on 19*26=494. Vastus: Need arvud on 19 ja 26. 1)Leian põranda pindala S=ab S=3,*2,7=8,91 (m²) 2) Leian ruudukujulise plaadi pindala S=a² S=15²=225 (cm²)=0,0225 (m²) 3) Leian mitu ruudukujulist plaati mahub põrandale, kui vahesid pole jäetud 8,91:0,0225=396 (plaati) 4) 90% ON 396 396*100%/90%=440 (plaati) 1) Täisnurkne 2) Arvutan lõigu AB ligikaudse pikkuse 1) Kasutades Pythagorase teoreemi leian külje AC a²+b²=c² c=9²+12²=225=15 ...

Matemaatika → Matemaatika
146 allalaadimist
thumbnail
15
docx

Matemaatika analüüsi II Kontrolltöö

Matemaatilise analüüsi II Kontrolltöö 1. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. a. Teades, et ­argumendi muut kohal a -funktsiooni muut kohal a a.i. Nii me näitasime, et a.ii. Tähistades ja vahe järgmiselt a.iii. Kehtib võrratus: a.iv. Et avaldada väärtust kaudu peame kõigepealt avaldama suhte: a.v. Korrutades saadud avaldist saame: kus a.vi. Nüüd näemegi, et koosneb kahest liidetavast, esimeseks dy= ja teine on , mis kahanevad piirprotsessis a.vii. Võrdleme neid suuruseid suhtes: a.viii. Lisaks kehtib veel: a.ix. Nüüd teame,et diferentsiaal dy on sama järku kahanev suur...

Matemaatika → Matemaatiline analüüs 2
100 allalaadimist
thumbnail
3
docx

Matemaatiline analüüs 1

23Funktsiooni muudu peaosa ja jääkliige. Olgu antud funktsioon, mis on diferentseeruv punktis a. Eeldame, et f(a)0 26l'Hospitali reegli põhjal saab 0/0 tüüpi määramatusega piirväärtuse arvutamisel üle minna piirväärtusele, mille all kasutades mõisteid: esineb esialgse murru lugeja tuletise ja nimetaja tuletise jagatis. x = x - a - argumendi muut kohal a Tuletamine. Arvutame lim(x0)?sinx/x?. Elementaarfunktsioon sinx/x ei ole x = 0 korral määratud (tekib määramatus y = f(x) - f(a) - funktsiooni muut kohal a . 0/0). Piirväärtuse arvutamisel kasutame l'Hospitali reeglit: Näitasime, et ...

Matemaatika → Matemaatiline analüüs 1
66 allalaadimist
thumbnail
10
docx

Kordamisküsimusi 3. teema kohta - Teooriatöö II

Kordamisküsimusi 3. teema kohta 1. Defineerida funktsiooni tuletis. Mis on diferentseeruv funktsioon ja diferentseerimine? Funktsiooni f tuletiseks punktis a nimetatakse järgmist suurust: f ( x )−f (a) f ' ( a )=lim x→ a x−a Kui funktsioon f omab punktis a lõplikku tuletist, siis öeldakse et ta on selles punktis diferentseeruv. Tuletise arvutamist nimetatakse diferentseerimiseks. 2. Esitada tuletise valem funktsiooni muudu ja argumendi muudu kaudu. Tuletist defineeriva piirväärtuse võib kirja panna ka argumendi muudu ja funktsiooni muudu kaudu. Olgu nii nagu ennegi: ∆x = x − a → argumendi muut kohal a , ∆y = f(x) − f(a) →funktsiooni muut kohal a . Siis f ( x )−f ( a) ∆y ∆y f ' ( a )=lim =lim =lim x→ a x−a x→a ∆ x x→ 0 ∆ x 3. Sõnastada j...

Matemaatika → Matemaatika analüüs i
5 allalaadimist
thumbnail
10
pdf

Diskreetsed struktuurid

Kontrolltöö lahendused Diskreetsed struktuurid 1. variant Ülesanne 1. 15 inimese hulgas on A ja B omavahel sõbrad ning C ja D omavahel vaenlased. Mitmel viisil saab need inimesed jaotada 5 ühesuuruseks rühmaks nii, et sõbrad kuuluksid samasse rühma, aga vaenlased erinevatesse rühmadesse? Rühmade järjekord oluline ei ole. Lahendus. Iga rühm peab sisaldama 3 inimest. Paigutame A ja B esimesse rühma. Kui selle rühma kolmas liige on C, siis tuleb ülejäänud 12 inimest jao- tada 4 ühesuuruseks rühmaks, ülesande tingimused saavad sellega täidetud. Eeldame esialgu, et nende 4 rühma järjekord on oluline. Valime 3 inimest esimesse rühma, selleks on 123 võimalust. Ülejäänud 9 inimesest valime 3 inimest teise rühma, milleks on 93 võimalust. Lõpuks valime 6 inimesest 3, kes moodustavad kolmanda rühma, selleks on 63 võimalust. Sellega o...

Informaatika → Informaatika1
52 allalaadimist
thumbnail
16
docx

J. Kurvitsa teooria vastused

1. Kollokvium 1. Hulga mõiste. Järjestatud hulk. Tehted hulkadega. Arvuhulgad. Teoreem. Ei leidu ratsionaalarvu, mille ruut on 2 (tõestada). Tõkestatud hulgad (näide). Tõkestamata hulgad (näide). Hulk koosneb elementidest, kusjuures elemendid ei kordu ja nende järjestus ei ole kindlaks määratud. Järjestatud hulk koosneb samuti elementidest, kuid selles hulgas on iga kahe elemendi kohta võimalik öelda, kumb neist on eelnev, kumb järgnev. Tehted hulkadega: * Hulkade A ja B ühendiks ehk summaks nimetatakse hulka, mille moodustavad kõik kas hulka A, hulka B või mõlemasse kuuluvad elemendid. Hulkade A ja B ühendit tähistatakse * Hulkade A ja B ühisosaks ehk korrutiseks nimetatakse hulka, mille moodustavad kõik üheaegselt nii hulka A kui ka hulka B kuuluvad elemendid. Hulkade A ja B ühisosa tähistatakse * Hulkade A ja B vaheks nimetatakse kõigi selliste elementide hulka, mis kuuluvad hulka A, kuid ei...

Matemaatika → Matemaatiline analüüs
195 allalaadimist
thumbnail
41
ppt

Kuldvillak

Eesti Matema Bioloogi Muusika Inglise keel atika a keel 100 100 100 100 100 200 200 200 200 200 300 300 300 300 300 400 400 400 400 400 Eesti keel 100 Mitu täishäälikut on? Vastus Eesti keel 100 Mitu täishäälikut on? 9 Eesti keel 200 Mitu tähte on tähestikus, kui on lisatud ka võõrtähed? Vastus Eesti keel 200 Mitu tähte on tähestikus, kui on lisatud ka võõrtähed? 32 Eesti keel 300 Mitu erinevat hääliku pikkusastet on eesti keeles ja mis need on? Vastus Eesti keel 300 Mitu erinevat hääliku pikkusastet on eesti keeles ja mis need on? 3 ja need on: lühike, pikk, ülipikk Eesti keel 400 Mis on eesti keele 3 suurimat murderühma? Vastus ...

Eesti keel → Eesti keel
3 allalaadimist
thumbnail
10
pdf

Elektrotehnika 1 Kodutöö 1 Skeem 5

Tallinna Tehnikaülikool Energeetikateaduskond: Elektrotehnika instituut Elektrotehnika I Kodutöö nr 1 Alalisvoolu ahel Õpilane: nimi xxx kood xxx Tallinn 2015 Algandmed: Skeem nr. 5 R1 = R2 = R5 = R6 = 1Ω; R3 = R4 = 0,5Ω E1 = 3V; E5 = 5,5V; E6 = 2V 1. Arvutada haruvoolud I1…I6 kontuurvoolude meetodil I11*(R1+R2) + I22*R2 = E1 I22*(R2+R3+R4+R6) + I11*R2 – I33*R4 = E6 I33*(R4+R5) – I22*R4 = E5 2I11 + I22 = 3 I11 + 3I22 – 0,5I33 = 2 – 0,5I22 + 1,5I33 = 5,5 2. Arvutada haruvoolud I1…I6 sõlmepingete meetodil U10*G11 – U20*G12 = J11  3*U10 – U24 = 5 U10*G21 – U30*G23 = J22  G21 – 3*U30 = 3,5 – U20*G32 + U30*G3...

Energeetika → Elektotehnika 1
83 allalaadimist
thumbnail
36
pdf

Matemaatiline analüüs

Matemaatiline analüüs 23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆x suhtes, kui ∆x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus: ∆y = f’(a)∆x + β , kus β = r(∆x)∆x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu ∆ x suhtes, kui ∆ x läheneb nullile? (tõestada!). funktsiooni muut ∆y koosneb kahest liidetavast, millest esimene on diferentsiaal dy = f’(a)∆x ja teine on β. Mõlemad liidetavad on lõpmatult kahanevad protsessis ∆x → 0. Võrdleme neid suurusi ∆x suhtes. Esiteks, eelduse f’(a)  0 põhjal saame lim dy ∆x= lim f’(a)/∆x* ∆x= lim f’(a) = f(a)  0. ∆x→0 ∆x→0 ∆x→0 Teiseks kehtib lim β/ ∆x = lim r(∆x)∆x /∆x = lim r(∆x) = 0. ∆x→0 ∆x→0 ∆x→0 Näeme, et esimene liidetav, so diferentsiaal dy on sama järku lõpmatult kahanev suurus kui ∆x ja t...

Matemaatika → Matemaatiline analüüs 1
14 allalaadimist
thumbnail
3
doc

Kt. materjal 2

Koonduv jõusüsteem, Koonduvaks nimetatakse jõusüsteemi, mille jõudude mõjusirged lõikuvad ühes punktis. Ülesannete lahendamiseks tuleb süsteem taandad lihtsamale kujule ja leida tasakaalutingimused. Taandamise aluseks on teoreem: koonduv jõusüsteem on ekvivalentne resultandiga, mis läbib jõudude mõjusirgete lõikepunkti. Superpositsiooniaksioomi järeldusena võib jõusüsteemis olevad jõud üle kanda nenede mõjusirgete lõikepunkti ja seejärel jõurööpküliku abil asendada nendega ekvivalentse resultandiga Fres. Võib ka joonestada jõukolmnurga (joon2), kus liidetavad jõud kujutatakse teineteise järel, resultant on suunatud esimese vektori algusest teise lõppu. Üldjuhul koosneb koonduv jõusüsteem rohkematest jõududest. Need võib üle kanda mõjusirgete lõikepunkti ja järjekorras liita jõukolmnurkade abil. Resultant on suunatud esimese jõu algusest viimase lõppu.(joon3). Tasandilise jõusüsteemi korral on resultanti võimalik leida graafiliselt, kuju...

Mehaanika → Tehniline mehaanika
252 allalaadimist
thumbnail
8
pdf

Kvantmehaanika essee

Essee Mittelokaalsus kvantmehaanikas Ave Hamatvalejev [email protected] A41204 Antud essee on kirjutatud David Z. Alberti raamatu põhjal, kus püüan kokkuvõtlikult lahti mõtestada mittelokaalsus ja lokaalsus kvantmehhaanikas ning looduses. Mida need vastandlikud nähtused endast kujutavad, on nad üldse reaalselt olemas ja kas nad saavad loogiliselt samaaegselt eksisteerida. Nii klassikalise füüsikateooria, kui ka meie igapäevase maailmatunnetuse üks olulisemaid nurgakivisid on lokaalsuse printsiip. Kvantmehaanika toob aga füüsikalisse maailmapilti mittelokaalsuse (lisaks paljudele muudele häirivatele või lausa mü...

Filosoofia → Filosoofia
6 allalaadimist
thumbnail
21
docx

Matemaatiline analüüs 1, teine teooriatöö kordamisküsimused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y ' =f ( a ) +r ( x ) x Korrutame saadud avaldise x-ga ja saame y=f ' ( a ) x+ , kus =r ( x ) x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (Tõestada) ' lim f ( a ) x dy lim r ( x ) x =¿ x o = lim f ' ( a )=f ' ( a ) 0 x x x o lim = x o = lim r ( x ) =0 lim ¿ x o x x x o x o Loetleda diferentsiaali omadused ...

Matemaatika → Matemaatika
10 allalaadimist
thumbnail
7
docx

Füüsika kt. 1 konspekt

1. Elektrilaengute vastastikune mõju. Elektrilaengul on järgmised omadused: o Elektrilaenguid on kaks tüüpi: positiivne ja negatiivne; o eksisteerib vähim positiivne ja negatiivne laeng, mis on absoluutväärtuselt täpselt võrdsed ­ elementaarlaeng; o elektrilaeng ei eksisteeri ilma laengukandjata; o kehtib elektrilaengu jäävuse seadus: isoleeritud süsteemis on elektrilaengute algebraline summa jääv; o elektrilaeng ei sõltu taustsüsteemist. Coulomb' i seadus: jõud, millega üks punktlaeng mõjub teisele, on võrdeline mõlema laengu suurusega ja pöördvõrdeline laengute vahekauguse ruuduga. Jõu siht ühtib laenguid läbiva sirge sihiga. 2. Elektrivälja tugevus. Elektrivälja tugevus on arvuliselt võrdne jõuga, mis mõjub antud punktis asuvale ühikulisele punktlaengule. Vektori E suund ühtib positiivsele laengule mõjuva jõu suunaga. Elektrivälja tugevus o...

Füüsika → Füüsika
258 allalaadimist
thumbnail
5
ppt

Koonus

KOONUS Ulvi Klemmer EKL ­ 2kõ Koonus... ... Keha, mille moodustab ühe oma kaateti Täisnurkne ümber kolmnurk pöörlev täisnurkne kolmnurk. Täisnurkne kolmnurk Vaatleme täisnurkset kolmnurka ABC Täisnurkse kolmnurga puhul saame kasutada Pythagorase teoreemi m² = h² +r² Külgpindala B Täispinadala Ruumala A C Kaatet BC on koonuse telg. Hüpotenuus AB on koonuse moodustaja. Pöörleva kolmnurga teine kaatet CA moodustab ringi, mida nimetatakse koonuse põhjaks. Lõik CA on ka kolmnurga raadiuseks. Kolmnurga hüpotenuus moodustab pöörlemisel C A koonuse külgpinna. Punkti B nimetatakse koonuse kõrgus ­ h A tipuks ning tipu kaugust raadius ...

Matemaatika → Matemaatika
74 allalaadimist
thumbnail
3
doc

Matemaatika teooria

1. Kuidas liidetakse harilikke murdusid? Kõigepealt teisendatakse murrud ühenimelisteks. Harilike murdude liitmisel liidetakse murdude lugejad, nimetaja jääb endiseks. (Liigmurrud teisendame segaarvuks juhul, kui vastuseks on liigmurd.) 2. Kuidas korrutada harilikke murdusid? Harilike murdude korrutamisel korrutame lugeja lugejaga ning nimetaja nimetajaga. 3. Kuidas jagada harilikke murdusid? Selleks, et jagada harilikku murdu hariliku murruga tuleb jagatav korrutada jagaja pöördarvuga. 4. Kuidas teisendada segaarv kümnendmurruks? Selleks tuleb segaarv teisendada liigmurruks (nimetaja * täisosa + lugeja) ning seejärel teisendada liigmurd kümnendmurruks (lugeja / nimetaja) 5. Kuidas teisendada kümnendmurd segaarvuks? Täisosa jääb samaks, murdosast saab lugeja ning nimetaja valitakse vastavalt sellele, mitu numbrit on peale koma. 6. Kuidas liita negatiivseid arve? Selleks, et liita kaht negatiivset arvu on vaja: 1) liita nende arvude abso...

Matemaatika → Matemaatika
10 allalaadimist
thumbnail
48
pdf

Maatriksid

¨ TARTU ULIKOOL MATEMAATIKA-INFORMAATIKA TEADUSKOND Puhta matemaatika instituut Aivo Parring ALGEBRA JA GEOMEETRIA Tartu 2005 SISSEJUHATUS K¨aesolevate m¨arkmete j¨arele tekkis vajadus 2000/01 ~oppeaastal, kui muudeti tollase matemaatikateaduskonna ~oppekavasid. Selle tulemusena l¨ ulitati ~oppekavasse algebra ja anal¨ uu¨tilise geomeetria sissejuhatavaid pea- t¨ukke k¨asitlev aine "Algebra ja geomeetria". Vahepeal on elu edasi l¨ainud. Matemaatikateaduskonnast on juba saanud matemaatika-informaatikatea- duskond. Nelja-aastasest bakalaureuse ~oppest on saamas kolmeaastane bakalaureuse ~ope. Uue ~oppekava kohaselt on selle ~oppeaine maht n¨ uu ¨d 40 tundi loenguid ja sama palju harjutusi. Iseseisvaks t¨o¨ oks on ette n¨ahtud 80 tundi. Semestri joo...

Matemaatika → Algebra ja geomeetria
55 allalaadimist
thumbnail
96
pdf

ALGEBRA JA GEOMEETRIA

¨ TARTU ULIKOOL MATEMAATIKA-INFORMAATIKA TEADUSKOND Puhta matemaatika instituut Aivo Parring ALGEBRA JA GEOMEETRIA Tartu 2005 SISSEJUHATUS K¨aesolevate m¨arkmete j¨arele tekkis vajadus 2000/01 ˜oppeaastal, kui muudeti tollase matemaatikateaduskonna ˜oppekavasid. Selle tulemusena l¨ ulitati ˜oppekavasse algebra ja anal¨ uu¨tilise geomeetria sissejuhatavaid pea- t¨ukke k¨asitlev aine ”Algebra ja geomeetria”. Vahepeal on elu edasi l¨ainud. Matemaatikateaduskonnast on juba saanud matemaatika-informaatikatea- duskond. Nelja-aastasest bakalaureuse ˜oppest on saamas kolmeaastane bakalaureuse ˜ope. Uue ˜oppekava kohaselt on selle ˜oppeaine maht n¨ uu ¨d 40 tundi loenguid ja sama palju harjutusi. Iseseisvaks t¨o¨ oks on ette n¨ahtud 80 tundi. Semestri joo...

Matemaatika → Algebra ja geomeetria
19 allalaadimist
thumbnail
37
docx

Matemaatiline analüüs l.

Matematiline analüüs l. Jaan Jaano 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Reaalarvu a vasakpoolseks ümbruseks...

Matemaatika → Matemaatiline analüüs
484 allalaadimist
thumbnail
204
pdf

Topoloogilised ruumid

¨ TALLINNA TEHNIKAULIKOOL MATEMAATIKAINSTITUUT Peeter Puusemp TOPOLOOGILISED RUUMID Loengukonspekt Tallinn 2003 SISUKORD Eess˜ona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 TOPOLOOGILINE RUUM . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Topoloogilise ruumi definitsioon . . . . . . . . . . . . . . . . . . . 6 1.2 Topoloogilise ruumi baas . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Kinnised hulgad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 ¨ 1.4 Ulesandeid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 ¨ 2 UMBRUSED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Punkti u ¨mbruste s¨ usteem . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Topoloogia m¨a¨a...

Matemaatika → Matemaatiline analüüs 2
11 allalaadimist
thumbnail
6
docx

Vähendatud programmi teooria 2

Matemaatiline analüüs I (Vähendatud programmi teooria vastused) Lokaalse ekstreemumi mõiste. Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib võrratus f(x) f(x1). Öeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on määratud punkti x1 mingis ¨umbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib v~orratus f(x) f(x1). Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle funktsiooni lokaalseteks ekstreemumiteks. Fermat' lemma. Kui funktsioonil f on punktis x1 lokaalne ekstreemum ja funktsioon on diferentseeruv selles punktis, siis f(x1) = 0. Rolle'i teoreem. Kui funktsioon f on lõigul [a, b] pidev, vahemikus (a, b) diferentseeruv ja rahuldab tingimust f(a) = f(b), siis leidub vahemikus (a, b) vähemalt üks punkt c nii, et f(c) = 0. Rolle'i teoreemil on lihtne g...

Matemaatika → Matemaatiline analüüs
131 allalaadimist
thumbnail
4
pdf

Matemaatiline analüüs I teine teooria

  Def:Funktsiooni  y=f(x) tuletiseks kohal x nimetatakse funktsiooni y=f(x) muudu Δy ja argumendi muudu  Δx  suhte piirväärtust, kui argumendi  muut läheneb nullile.  Def:​ Kui funktsioonil f(x) on tuletis punktis x, siis öeldakse, et funktsioon on ​ diferentseeruv​  punktis x.  Def:  Geomeetriliselt  võib  funktsiooni  y=f(x)  ​ interpreteerida  kui  selle  funktsiooni  graafikule  punktis  (x;   f(x))  konstrueeritud  tõusunurga  tangensit.   Def: ​ Funktsiooni y=f(x) ​parempoolseks tuletiseks​  kohal x nimetatakse suurust  f ´(x +) = lim Δy Δx  Δ→0+ Δy Def: ​ Funktsiooni y=f(x) ​ vasakpoolseks tuletiseks​  kohal x nimetatakse suurust  ...

Matemaatika → Matemaatiline analüüs
42 allalaadimist
thumbnail
1
rtf

Pythagorase teoreem

Pythagorase teoreem Pythagoras oli Vana-Kreeka filosoof, elades 580-500 e.m.a. Sündis Samosel, suri Musese kloostris. Võttis kasutusele ruudu ja kuubi mõiste arvutamisel. Pythagorasel oli kool Krootonis, kus elati askeetlikult. Neil oli pmst oma usk. Koolis õpiti teadust, arstiteadust, kunsti ja muusikat. Õpitöö oli suuline ja kestis 5 aastat. Kõik oli salajane. Seal õppis ka tema naine. Tema teoreemi tõestas arvatavasti hoopis tema naine. Pytharoras avastas ka, et maailm on kerakujuline. Pytharoras leidis ka 5 elemendi: eetri. 4 elementi on tuli, vesi, maa ja õhk. Peale tema surma lagunes ka kool. Täisnurksel kolmnurgal on 2 kaatetit ja 1 hüpotenuus. Kaatetid a;b, hüpotenuus c. Diameetrile toetuv piirdenurk on täisnurk. (Ringile teotub nurk ja diameetriks on hüpotenuus) Sellel teoreemil on 150 tõestust. Täisnurkse kolmnurga hüpotenuusile konstrueeritud ruudu pindala on võrdne kaatetitele konstrueeritud ruutude pindalade summaga. Eh...

Matemaatika → Matemaatika
138 allalaadimist
thumbnail
1
odt

Impulss

Impulss See artikkel räägib mehaanika mõistest; närviimpulsi kohta vaata artiklit Närviimpulss; teiste tähenduste kohta vaata lehekülge Impulss (täpsustus) Impulss ehk liikumishulk on füüsikaline suurus, mis võrdub keha massi ja kiiruse korrutisega. Kehtib ka liikumishulga jäävuse seadus, mis ütleb: suletud süsteemi kuuluvate kehade liikumishulkade geomeetriline summa on nende kehade igasuguse vastasmõju korral jääv. Suletud süsteem tähendab siin süsteemi, mis ei ole vastastikuses mõjutuses süsteemiväliste kehadega. Impulsi valem on: m = keha mass 0v = keha kiirus Ühik: kilogramm-meeter sekundi kohta (kg*m/s). Impulsi jäävuse seadus Artikkel vajab täiendamist, et anda teemast piisavat ülevaadet. Märkuse lisamise konkreetseid põhjusi vaata artikli muudatuste ajaloost või artikli arutelust. Impulsi jäävuse seadus on üks olulisemaid jäävusseaduseid füüsikas. See väidab, et igasuguse kehade süsteemi imp...

Füüsika → Füüsika
42 allalaadimist
thumbnail
177
pdf

ÜHE MUUTUJA MATEMAATILINE ANALÜÜS

LTMS.00.022 ÜHE MUUTUJA MATEMAATILINE ANALÜÜS Loengukursus Tartu Ülikooli loodus- ja täppisteaduste valdkonna üliõpilastele 2019./2020. õppeaasta Toivo Leiger Joonised: Ksenia Niglas Pisitäiendused 2016–20: Märt Põldvere, Natalia Saealle, Indrek Zolk, Urve Kangro 2 Sisukord 1 Reaalarvud 6 1.1 Järjestatud korpused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.1 Korpuse aksioomid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.2 Järjestatud korpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.3 Täielik järjestatud ...

Matemaatika → Algebra I
8 allalaadimist
thumbnail
1
docx

Matemaatika põhikooliriigieksam 2007 B variant

(4a-3b)²-3b(3b-7a)= 16a²-24ab+9b²+21ab=16a²-3ab Arvutan avaldise väärtuse kui a=0,5 ja b=-2/3 16*0,5-3*0,5*(-2/3)=5 1)250*74%/100%= 185 (kr) 2) 50:250=0,2 0,2*100%=20% 3) 250-185-50=15(kr) 4)15:250=0,6 0,6*100%=6% Olgu üks arv x ja teine x-9, nende arvude korrutis on 532, Saan võrrandi x(x-9)=532 x(x-9)-532=0 x²-9x-532=0 kasutan lahendi valemit Leian teis arvu 28-9=19 Kontroll: üks arv on 28 ja teine 19 nende arvude korrutis On 532. 1.Leian seina pindala S=ab S=3,6*2,4=8,64 (m²) 2. Leian ristküliku kujulise plaadi pindala S=ab S=20*30=600 (cm²)=0,06 (m²) 3. Leian mitu ristküliku kujulist plaati mahub seinale, kui vahesid ei jääta 8,64:0,06=144 (plaati) 4. 90% ON 144 144*100%/90%=160 (plaati) 1. MNK ja LMK on täisnurksed 2. Arvutan külje LM ligikaudse pikkuse Kasutades Pythagorase teoreemi

Matemaatika → Matemaatika
144 allalaadimist
thumbnail
1
odt

Carl Friedrich Gauss

Carl Friedrich Gauss Carl Friedrich Gauss elas 30 April 1777­ 23 February 1855. Ta oli Saksa matemaatik ja teadlane. Ta aitas oluliselt kaasa paljudes valdkondades, sealhulgas arvutiteooria, statistika, anals, geomeetria, geodeesia, elektrostaatika, astronoomia ja optika. Ta nitas les eeldusi matemaatikaga tegelemiseks juba varajases nooruses. Kolmandal eluaastal parandas ta isa arvutusi kui viimane arvutas tliste ndalapalga suurust. Koolis avastas ta 9-aastaselt iseseisvalt aritmeetilise jada summa valemi tisarvude 1 kuni 100 liitmiseks. Ta ppis Braunschweigis ja Gttingenis. Kui Gauss oli 14 aastane, esitleti teda Braunschweigi hertsogile, kes poisi andekusest vaimustus ning teda ka pikka aega rahaliselt toetas. likooli ajal 1796 nitas, et sirkli ja joonlaua abil on vimalik konstrueerida korraprast seitseteistnurka. Umbes samal ajal tuletas ta vhimruutudemeetodi. Doktorits testas algebra phi...

Matemaatika → Matemaatika
36 allalaadimist
thumbnail
1
docx

Eukleides

Eukleides Eukleides oli kreeka matemaatik , keda tuntakse ka geomeetria isana. Tema elust ei teata muud, kui et ta tegutses ja õpetas Aleksandrias 3. sajandi alguses enne meie ajaarvamist. Ta on esimeste peaaegu täielikult säilinud matemaatikaalaste teoste autor. Tema tähtsaim teos, 13 raamatust koosnev ,,Elemendid", sisaldab peaaegu kogu elementaargeomeetriat ehk geomeetria haru, milles kõrgemat matemaatikat kasutamata uuritakse lihtsamate kujundite põhilisi omadusi. See teos oli ilmumisajast kuni 20. sajandi alguseni kasutusel matemaatika ja geomeetriaõpikuna. Selles leidunud põhitõdesid kutsutakse nüüd Eukleidese geomeetriaks. Eukleidese geomeetrias valitseb range järjepidevus ja sisemine seos. Tema geomeetria aluseks on definitsioonid ja aksioomid, millele tuginevad teoreemid. Iga järgmise teoreemi tõestus põhineb eeltõestatuil. Eukledes tegeles ka astronoomiaga, opti...

Matemaatika → Matemaatika
43 allalaadimist
thumbnail
3
doc

Diferentsiaalvõrrandite 1 Kollokviumi spikker

1.Diferentsiaalvõrrandi mõiste ­ DV nim võrrandit, mis seob sõltumatut muutujat x, otsitavat funktsiooni y=f(x) ja selle tuletisi y', y'',...yn HDV üldkuju: F(x,y,y')=0 ; x-sõltumatu muutuja, y=y(x) otsitav f ja y'=dy/dx otsitava f-i tuletis. Esimest järku HDV normaalkuju: y'=f(x.y) (edasi sama mis üldkujul). Esimest järku HDV sümmeetriline kuju: M(x,y)dx + N(x,y)dy=0. Cauchy ülesanne: {y'=f(x,y) {y(Xo)=Yo * esimest järku HDV jaoks f(x,y) on pidev piirkonnas D=> eksisteerib (Xo; Yo). Kui y=y(x) on teada, siis y'(x) = f(x, y(x)) iga xD korral ; y'(Xo)=f(Xo,y(Xo)) ; y'(Xo)=f(Xo,Yo) ; tan=y'(Xo)=f(Xo;Yo) 2.I järku DV lahend: DV lahend on funktsioon, mille asetamisel võrrandisse same samasuse sõltumatute muutujate suhtes. *Esimest järku DV üldlahendiks nim f-i: y(Xo)=Yo. Lahendi olemasolu ja ühesus: Cauchy teoreem: Olgu f(x;y) pidev piirkonnas D ning olgu tal selles piirkonnas olemas pidev osatuletis f(x,y)/y. Siis läbi iga punkti (Xo;Yo)D ...

Matemaatika → Dif.võrrandid
393 allalaadimist
thumbnail
6
doc

Matemaatiline analüüs I, 2. kollokviumi spikker

1. Tuletise lineaarsuse tõestus, st näidata, et saame konstandi tuletise märgi alt välja tuua ning summa tuletis on tuletiste summa. Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on diferentseeruv ka funktsioon cf(x) Tõestus:Korrutise tuletisest y’=f’(x)g(x)+f(x)g’(x) lähtuvalt, kui cR on konstant, siis y=c*f(x) tuletis on Tõepoolest, valem kehtib juhul n=1. y’=f(x)*c’+f ’(x)*c=0*f(x)+c*f ’(x)=c*f ’(x) Nüüd tuleb näidata induktsioonisamm: eeldame, et valem kehtib juhul n-1 ja näitame, et sel juhul kehtib ta Lause: Kui funktsioonid f(x) ja g(x) on diferentseeruvad punktis x ja cR on konstant, siis selles punktis on ka n korral. Seega kehtib: diferentseeruv ka funktsioon y=f(x)+g(x) Tõestus: y=f(x)+g(x) esmalt, toimides sammhaaval, tehes eraldi tehetena komponendid,saame ...

Matemaatika → Matemaatiline analüüs 1
41 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun