Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

"-raskuskiirenduse" - 91 õppematerjali

thumbnail
doc

Maa raskuskiirenduse määramine.

Raskuskiirenduse määramine matemaatilise pendli abil.

Füüsika → Füüsika
0 allalaadimist
thumbnail
2
pdf

Praktikum - Raskuskiirendus

RASKUSKIIRENDUS 1.Tööülesanne. Maa raskuskiirenduse määramine. 2.Töövahendid. Pendlid, sekundimõõtjad, mõõtelint. 3.Töö teoreetilised alused. Tahket keha, mis on kinnitatud raskuskeskmest kõrgemal asuvast punktist ja võib raskusjõu mõjul vabalt võnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks. Idealiseeritud süsteemi, kus masspunkt võngub lõpmatult peene venimatu ja kaaluta niidi otsas, nimetatakse matemaatiliseks pendliks. Matemaatilise pendli võnkeperiood T avaldub järgmiselt: T = 2 l/g kus l - pendli pikkus, g - raskuskiirendus. Valem kehtib ainult väikeste võnkeamplituudide korral, kui võnkumist võib lugeda harmooniliseks. Matemaatilise pendlina kasutame antud töös peenikese ja kerge niidi otsa kinnitatud kuulikest (joonis A). joonis A joonis B Füüsi...

Füüsika → Füüsika
327 allalaadimist
thumbnail
6
docx

Maa raskuskiirenduse määramine.

1.Tööülesanne. Maa raskuskiirenduse määramine. 2.Töövahendid. Pendlid, sekundimõõtjad, mõõtelint. 3.Töö teoreetilised alused. Tahket keha,mis on kinnitatud raskuskeskmest kōrgemal asuvast punktist ja vōib raskusjōu mōjul vabalt vōnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks.Idealiseeritud süsteemi,kus masspunkt vōngub lōpmatult peene venimatu ja kaaluta niidi otsas,nimetatakse matemaatiliseks pendliks. Matemaatilise pendli vōnkeperiood T avaldub järgmiselt: T =2 π √ l g kus l- pendli pikkus, g - raskuskiirendus. g avaldub sellest valemist järgmiselt: 4 π2 l g= T2 Valem kehtib ainult väikeste vōnkeamplituudide korral,kui vōnkumist vōib lugeda harmooniliseks. Matemaatilise pendlina kasutame antud töös peenikese ja kerge niidi otsa kinnitatud kuulikest (joonis A). ...

Füüsika → Füüsika
25 allalaadimist
thumbnail
4
docx

Maa raskuskiirenduse määramine.

1 RASKUSKIIRENDUS 1.1 Tööülesanne Maa raskuskiirenduse määramine. 1.2 Töövahendid Pendlid, sekundimõõtjad, mõõtelint. 1.3 Töö teoreetilised alused Tahket keha,mis on kinnitatud raskuskeskmest kōrgemal asuvast punktist ja vōib raskusjōu mōjul vabalt vōnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks.Idealiseeritud süsteemi,kus masspunkt vōngub lōpmatult peene venimatu ja kaaluta niidi otsas,nimetatakse matemaatiliseks pendliks. Matemaatilise pendli vōnkeperiood T avaldub järgmiselt: kus l - pendli pikkus, g - raskuskiirendus. Valem kehtib ainult väikeste vōnkeamplituudide korral,kui vōnkumist vōib lugeda harmooniliseks. Matemaatilise pendlina kasutame antud töös peenikese ja kerge niidi otsa kinnitatud kuulikest (joonis A). 1.4 Arvutus tulemuste tabel Katse nr. I, m n t, s T, s T2, s2 gi, m/s2 gk-gi, m/s2 1 0,407 15 19,49 1,29...

Füüsika → Füüsika praktikum
4 allalaadimist
thumbnail
3
docx

Maa raskuskiirenduse määramine

RASKUSKIIRENDUS 1.Tööülesanne. Maa raskuskiirenduse määramine. 2.Töövahendid. Pendlid, sekundimõõtjad, mõõtelint. 3.Töö teoreetilised alused. Tahket keha,mis on kinnitatud raskuskeskmest krgemal asuvast punktist ja vib raskusju mjul vabalt vnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks.Idealiseeritud süsteemi,kus masspunkt vngub lpmatult peene venimatu ja kaaluta niidi otsas,nimetatakse matemaatiliseks pendliks. Matemaatilise pendli vnkeperiood T avaldub järgmiselt: T =2 l g kus: l - pendli pikkus g - raskuskiirendus. Valem kehtib ainult väikeste vnkeamplituudide korral,kui vnkumist vib lugeda harmooniliseks. Matemaatilise pendlina kasutame antud töös peenikese ja kerge niidi otsa kinnitatud kuulikest (joonis A). joonis...

Füüsika → Mehaanika ja soojuse valemid
2 allalaadimist
thumbnail
1
doc

Raskuskiirendus

Raskuskiirendus Raskuskiirenduse arvutused katse nr 1 järgi VALEMID: , l= 79cm = 0,79m n= 20 t= 35,25s g= (10,35 + 10,95 + 10,36 + 9,97 + 11,4 + 10,54 ) : 6 = 10,595 |g ­ gi = 10,35 ­ 10,595 = |0,245| =(0,245 + 0,355 + 0,235 + 0,625 + 0,805 + 0,055) : 6 = 0,39 Järeldused: Keskmine g väärtus on 10,595 , mis on ligilähedane maa raskuskiirendusega 9,81 . Keskmine absoluutne viga on 0,39 Hälve: = 0,037 ­ mis tähendab, et mõõtmistulemused on rahuldavad, ses hälve pole üle 1%

Ökoloogia → Ökoloogia ja keskkonnakaitse
30 allalaadimist
thumbnail
1
xls

Praktikum 19: Raskuskiirendus

Matemaatiline pendel NR. l, m n t, s T,s T2, s2 g , m/s (g-g)2 ,m2/s2 g, m/s2 1. 0,70 20 33,856 1,693 2,86557 9,6438 0,028893 0,00745 2. 0,75 20 34,730 1,737 3,01543 9,8191 2,865E-005 0,00713 3. 0,80 20 35,847 1,792 3,21252 9,8311 0,0003029 0,00673 4. 0,85 20 36,770 1,839 3,38008 9,9278 0,0130009 0,00643 5. 1,00 20 40,046 2,002 4,00921 9,8469 0,0011024 0,0055 l= 0,0005 Keskmised: g= 9,8137 g= 0,00665 Füüsikaline pendel a= 0,536 NR. l, m n t, s T,s g , m/s 1. 1,420 20 37,262 1,8631 9,66158 2. 1,420 20 37,150 1,8575 9,71993 3. 1,420 20 37,294 1,8647 9...

Füüsika → Füüsika
460 allalaadimist
thumbnail
4
doc

Maa raskuskiirenduse määramine matemaatilise pendli abil.

Tööülesanne Maa raskuskiirenduse määramine matemaatilise pendli abil. Töövahendid Pendel, sekundimõõtja, mõõdulint. Töö teoreetilised alused ja katseskeem Matemaatiliseks pendliks nimetatakse idealiseeritud süsteemi, kus masspunkt võngub lõpmatult peene venimatu ja kaaluta niidi otsas (joonis A). Matemaatilise pendli võnkeperiood avaldub järgmiselt: l T  2 g Kus l on pendli pikkus, g - raskuskiirendus. Raskuskiirendus g avaldub matemaatilise pendli võnkeperioodi valemist järgmiselt: 4 2l g 2 T Töö käik. Mõõdetakse kuue erineva pendli pikkused l. Pendlid pannakse ükshaaval võnkuma mõnekraadise amplituudiga. Määratakse etteantud n võnke kestvus t. Lähteandmed kantakse töökäiku iseloomustavasse tabelisse (tabel 1). Katse nr l, m n ...

Füüsika → Füüsika
15 allalaadimist
thumbnail
6
pdf

Raskuskiirendus

KATSEANDMETE TABELID Tabel 1: Raskuskiirenduse määramine matemaatilise pendliga Katse nr. l, cm n t, s T, s T2, s2 gi, m/s2 (gi- )2, m2/s4 1 47,5 7 9,775 1,39643 1,95001 9,61647 0,00316 2 42,7 7 9,240 1,32000 1,74240 9,67475 0,01310 3 36,1 7 8,513 1,21614 1,47900 9,63602 0,00573 4 27,9 7 7,593 1,08471 1,17661 9,36124 0,03962 5 18,0 7 6,050 0,86429 0,74699 9,51300 0,00224 Keskmine: 9,56030 Tabel 2: Raskuskiirenduse määramine füüsikalise pendliga Katse nr. l, cm n t, s T, s T2, s2 gi, m/s2 (gi- )2, m2/s4 1 59 7 8,245 1,17786 ...

Füüsika → Füüsika
817 allalaadimist
thumbnail
6
pdf

Raskuskiirendus

Nimi: 1. TÖÖÜLESANNE Maa raskuskiirenduse määramine matemaatilise pendli abil. 2. TÖÖVAHENDID Pendlid, sekundimõõtja (Pasco ME-1234), mõõtelint, fotoväravaga ühendatud taimer (Pasco Me-9215B). 3. TÖÖ TEOREETILISED ALUSED Tahket keha, mis on kinnitatud raskuskeskmest kōrgemal asuvast punktist ja vōib raskusjōu mōjul vabalt vōnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks. Idealiseeritud süsteemi, kus masspunkt vōngub lōpmatult peene venimatu ja kaaluta niidi otsas, nimetatakse matemaatiliseks pendliks. Matemaatilise pendli vōnkeperiood T avaldub järgmiselt: T = 2π√gl ​(1)​, kus l on pendli pikkus ja g on raskuskiirendus. Valem kehtib ainult väikeste vōnkeamplituudide korral, kui vōnkumist vōib lugeda harmooniliseks. Matemaatilise pendlina kasutame antud töös peenikese ja kerge niidi otsa kinnitatud kuulikest. 4. TÖÖ KÄIK, VALEMITE AVALDAMINE, ARVUTUSED 1. Mōōdame viie erineva pendli õla pikkused. 2. ...

Füüsika → Füüsika
45 allalaadimist
thumbnail
3
doc

Raskuskiirendus

TALLINNA TEHNIKAÜLIKOOL Füüsikainstituut Üliõpilane: Teostatud: Õpperühm: Kaitstud: Töö nr. 19 OT: Raskuskiirendus Töö eesmärk: Töövahendid: Maa raskuskiirenduse määramine Pendel, ajamõõtja, mõõtejoonlaud, prisma pendli tasakaalustamiseks, millimeetripaber Töö teoreetilised alused Tahket keha, mis on kinnitatud raskuskeskmest kõrgemal asuvast punktist ja võib raskusjõu mõjul vabalt võnkuda seda punkti läbiva telje umber, nimetatakse füüsikaliseks pendliks. Idealiseeritud süsteemi, kus masspunkt võngub lõpmatult peene venimatu ja kaaluta niidi otsas, nimetatakse matemaatiliseks pendliks. 1 M...

Füüsika → Füüsika
385 allalaadimist
thumbnail
1
doc

Füüsika I 16. praksi tiitelleht - tabelid

Raskuskiirenduse määramine matemaatilise pendliga (gi - g¯)², Katse nr. l, cm n t, s T, s T², s² gi, m/s² m²/s4 1. 2. 3. 4. 5. g= ± Raskuskiirenduse määramine füüsikalise pendliga (gi - g¯)², Katse nr. a, cm n t, s T, s T², s² gi, m/s² m²/s4 1. 2. 3. 4. 5. 6. ...

Füüsika → Füüsika
3 allalaadimist
thumbnail
3
docx

Raskuskiirendus labor

RASKUSKIIRENDUS LABORATOORNE TÖÖ Õppeaines: FÜÜSIKA Rõiva ja tekstiili instituut Õpperühm: TD 12/22 Juhendaja: Karli Klaas Tallinn 2017 Tööülesanne Maa raskuskiirenduse määramine. Töövahendid Pendlid, sekundimõõtja (............................................), mõõtelint, fotoväravaga ühendatud taimer (........................ ......................................) Töö teoreetilised alused Tahket keha, mis on kinnitatud raskuskeskmest krgemal asuvast punktist ja vib raskusju mjul vabalt vnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks. Idealiseeritud süsteemi, kus masspunkt vngub lpmatult peene venimatu ja kaaluta niidi otsas, nimetatakse matemaatiliseks pendliks. Matemaatilise pendli vnkeperiood T, mille jooksul antud pendel sooritab ühe täisvõnke, avaldub järgmiselt: T =2 l g kus l ­ pendli pikkus (m), g ­ raskuskiirendus (m/s²). Valem kehtib ...

Füüsika → Füüsika
46 allalaadimist
thumbnail
3
doc

Füüsika laboratoorne töö nr 3 - Füüsika laboratoorne töö nr 3 Raskuskiirendus

TALLINNA TEHNIKAKÕRGKOOL Füüsika laboratoorne töö nr 3 Raskuskiirendus Õppeaines: FÜÜSIKA I Mehaanikateaduskond Õpperühm: Üliõpilased: Juhendaja: Peeter Otsnik Tallinn 1. Tööülesanne Maa raskuskiirenduse määramine. 2. Töövahendid Pendlid, sekundimõõtjad, mõõtelint. 3. Töö teoreetilised alused Tahket keha, mis on kinnitatud raskuskeskmest kõrgemal asuvast punktist ja võib raskusjõu mõjul vabalt võnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks. Idealiseeritud süsteemi, kus masspunkt võngub lõpmatult venimatu ja kaaluta niidi otsas, nimetatakse matemaatiliseks pendliks. Matemaatilise pendli võnkeperiood T avaldub järgmiselt: T= 2(l/g) kus l ­ pendli pikkus g ­raskuskiirendus Siit saame ka avaldada raskuskiirenduse g= 4 2l/T2 Valem kehtib ainult väikeste võnkeamplituudide korral, kui võnkumist võib lugeda harmooniliseks. Mat...

Füüsika → Füüsika
450 allalaadimist
thumbnail
6
doc

Füüsika labor nr 3 - Raskuskiirendus

TALLINNA TEHNIKAKÕRGKOOL Füüsika laboratoorne töö nr 3 Raskuskiirendus Õppeaines: FÜÜSIKA I Mehaanikateaduskond Õpperühm: Üliõpilased: Juhendaja: Peeter Otsnik Tallinn 1. Tööülesanne Maa raskuskiirenduse määramine. 2. Töövahendid Pendlid, sekundimõõtjad, mõõtelint. 3. Töö teoreetilised alused Tahket keha, mis on kinnitatud raskuskeskmest kõrgemal asuvast punktist ja võib raskusjõu mõjul vabalt võnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks. Idealiseeritud süsteemi, kus masspunkt võngub lõpmatult venimatu ja kaaluta niidi otsas, nimetatakse matemaatiliseks pendliks. Matemaatilise pendli võnkeperiood T avaldub järgmiselt: T= 2π√(l/g) kus l – pendli pikkus g –raskuskiirendus Siit saame ka avaldada raskuskiirenduse g= 4 π2l/T2 Valem kehtib ainult väikeste võnkeamplituudide korral, kui võnkumist võib lugeda harmooniliseks....

Füüsika → Füüsika
110 allalaadimist
thumbnail
6
pdf

Füüsika 1 Labor Raskuskiirendus

RASKUSKIIRENDUS LABORATOORSED TÖÖD Õppeaines: FÜÜSIKA I Mehaanikateaduskond Õpperühm: TI-11 (B2) Juhendaja: Karli Klaas Esitamiskuupäev: 22.09.2015 Tallinn 2015 1.Tööülesanne. Maa raskuskiirenduse määramine. 2.Töövahendid. Pendlid, sekundimõõtjad, mõõtelint. 3.Töö teoreetilised alused. Tahket keha,mis on kinnitatud raskuskeskmest kōrgemal asuvast punktist ja vōib raskusjōu mōjul vabalt vōnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks.Idealiseeritud süsteemi,kus masspunkt vōngub lōpmatult peene venimatu ja kaaluta niidi otsas,nimetatakse matemaatiliseks pendliks. Matemaatilise pendli vōnkeperiood T avaldub järgmiselt: kus l - pendli pikkus, g - raskuskiirendus. Valem kehtib ainult väikeste vōnkeamplituudide korral,kui vōnkumist vōib lugeda harmooniliseks. Matemaatilise pendlina kasutame antud töös peenikese ja kerge niidi otsa kinnitatud kuulikest (j...

Füüsika → Füüsika
36 allalaadimist
thumbnail
6
doc

Füüsika I labor - raskuskiirendus

RASKUSKIIRENDUS LABOR Õppeaines: FÜÜSIKA 1 Mehaanikateaduskond Õpperühm: ET-11b Juhendaja: lektor Sergei Ptsjolkin Tallinn 2013 1. Tööülesanne. Maa raskuskiirenduse määramine. 2.Töövahendid. Pendlid, sekundimõõtjad, mõõtelint. 3.Töö teoreetilised alused. Tahket keha,mis on kinnitatud raskuskeskmest krgemal asuvast punktist ja vib raskusju mjul vabalt vnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks.Idealiseeritud süsteemi,kus masspunkt vngub lpmatult peene venimatu ja kaaluta niidi otsas,nimetatakse matemaatiliseks pendliks. Matemaatilise pendli vnkeperiood T avaldub järgmiselt: kus l - pendli pikkus, g - raskuskiirendus. Valem kehtib ainult väikeste vnkeamplituudide korral,kui vnkumist vib lugeda harmooniliseks. Matemaatilise pendlina kasutame antud töös peenikese ja kerge niidi otsa kinnitatud kuulikest (joonis A). l jo...

Füüsika → Füüsika
112 allalaadimist
thumbnail
2
doc

Raskuskiirendus

RASKUSKIIRENDUS. 1.Tööülesanne. Maa raskuskiirenduse määramine. 2.Töövahendid. Pendlid, sekundimõõtja, mõõtelint. 3.Töö teoreetilised alused. Tahket keha, mis on kinnitatud raskuskeskmest korgemal asuvast punktist ja võib raskusjõu mõjul vabalt võnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks.Idealiseeritud süsteemi,kus masspunkt võngub lõpmatult peene venimatu ja kaaluta niidi otsas,nimetatakse matemaatiliseks pendliks. Matemaatilise pendli võnkeperiood T avaldub järgmiselt: kus l - pendli pikkus, g - raskuskiirendus. Valem kehtib ainult väikeste võnkeamplituudide korral,kui võnkumist võib lugeda harmooniliseks. Matemaatilise pendlina kasutati antud töös peenikese ja kerge niidi otsa kinnitatud kuulikest. Füüsikalise pendli võnkeperiood T on arvutatav valemiga: kus I on pendli inertsmoment pöörlemistelje suhtes, a - masskeskme kaugus pöörlemisteljest, m- pendli mass. ...

Füüsika → Füüsika
240 allalaadimist
thumbnail
3
docx

Raskuskiirendus

RASKUSKIIRENDUS. 1.Tööülesanne. Maa raskuskiirenduse määramine. 2.Töövahendid. Pendlid, sekundimõõtjad, mõõtelint. 3.Töö teoreetilised alused. Tahket keha,mis on kinnitatud raskuskeskmest krgemal asuvast punktist ja vib raskusju mjul vabalt vnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks.Idealiseeritud süsteemi,kus masspunkt vngub lpmatult peene venimatu ja kaaluta niidi otsas,nimetatakse matemaatiliseks pendliks. Matemaatilise pendli vnkeperiood T avaldub järgmiselt: T = 2 l g kus l- pendli pikkus, g - raskuskiirendus. Valem kehtib ainult väikeste vnkeamplituudide korral,kui vnkumist vib lugeda harmooniliseks. Matemaatilise pendlina kasutame antud töös peenikese ja kerge niidi otsa kinnitatud kuulikest (joonis A). ...

Füüsika → Füüsika
19 allalaadimist
thumbnail
4
docx

Raskuskiirendus ME11B

Jaan Tamm RASKUSKIIRENDUS LABORATOORNE TÖÖ Õppeaines: FÜÜSIKA I Tehnikainstituut Õpperühm: ME 11 Juhendaja: dotsent Rein Ruus Esitamiskuupäev:................ Üliõpilase allkiri:................. Õppejõu allkiri: .................. Tallinn 2017 SISUKO 1. TÖÖÜLESAN NE Maa raskuskiirenduse määramine. 2. TÖÖVAHEN DID Pendlid, sekundimõõtjad, mõõtelint. 3. TÖÖ TEOREETILISED ALUSED Tahket keha, mis on kinnitatud raskuskeskmest krgemal asuvast punktist ja vib raskusju mjul vabalt vnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks. Idealiseeritud süsteemi, kus masspunkt vngub lpmatult peene venimatu ja kaaluta niidi otsas, nimetatakse matemaatiliseks pendliks. Matemaatilise pendli vnkeperiood T avaldub järgmiselt: ...

Füüsika → Füüsika praktikum
15 allalaadimist
thumbnail
6
docx

Raskuskiirendus aruanne

RASKUSKIIRENDUS PRAKTIKA ARUANNE Õppeaines: FÜÜSIKA (I) Mehaanikateaduskond Õpperühm: Juhendaja: Esitamiskuupäev: 20.11.2014 Tallinn 2014 1.Tööülesanne. Maa raskuskiirenduse määramine. 2.Töövahendid. Pendlid, sekundimõõtjad, mõõtelint. 3.Töö teoreetilised alused. Tahket keha,mis on kinnitatud raskuskeskmest kōrgemal asuvast punktist ja vōib raskusjōu mōjul vabalt vōnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks.Idealiseeritud süsteemi,kus masspunkt vōngub lōpmatult peene venimatu ja kaaluta niidi otsas,nimetatakse matemaatiliseks pendliks. Matemaatilise pendli vōnkeperiood T avaldub järgmiselt: T= 2 * π* √(l/g) kus ...

Füüsika → Füüsika
38 allalaadimist
thumbnail
4
docx

Raskuskiirendus

RASKUSKIIRENDUS PRAKTIKA ARUANNE Õppeaines: FÜÜSIKA (I) Ehitusteaduskond Õpperühm: Juhendaja: Esitamiskuupäev: 22.10.2014 Tallinn 2014 1. Tööülesanne Maa raskuskiirenduse määramine. 2. Töövahendid Pendlid, sekundimõõtjad, mõõtelint. 3. Töö teoreetilised alused. Tahket keha,mis on kinnitatud raskuskeskmest kōrgemal asuvast punktist ja vōib raskusjōu mōjul vabalt vōnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks.Idealiseeritud süsteemi, kus masspunkt vōngub lōpmatult peene venimatu ja kaaluta niidi otsas, nimetatakse matemaatiliseks pendliks. Matemaatilise pendli vōnkeperiood T avaldub järgmiselt: T =2 π ...

Füüsika → Füüsika
41 allalaadimist
thumbnail
34
doc

Mehhaaniline energia

Chris Naerismaa FÜÜSIKA LABORIARUANNE LABORATOORSED TÖÖD Õppeaines: FÜÜSIKA Ehitusteaduskond Õpperühm: KHE11 Juhendaja: JANA PAJU Esitamiskuupäev:……………. Üliõpilase allkiri:…………….. Õppejõu allkiri: ……………… Tallinn 2016 SISUKORD 1 LABORATOORNE TÖÖ NR. 1.......................................................................................................3 1.1 Mehhaaniline energia.................................................................................................................3 1.1.1 Tööülesanne.........................................................................................................................3 1.1.2 Töövahendid........................................................................................................................3 1.1.3 Ka...

Füüsika → Füüsika praktikum
39 allalaadimist
thumbnail
1
docx

Raskuskiirendus

RASKUSKIIRENDUS 1. Tööülesanne Maa raskuskiirenduse määramine 2. Töövahendid Pendlid, sekundimõõtja, mõõdulint. 3. Töö teoreetilised alused Mõõta antud pendli õla pikkus ja võnkeperiood, arvutada raskuskiirendus. Määrata juhuslik ja süstemaatiline viga. Arvutamisel arvestada, et tegemist on matemaatilise pendliga. 4. Kasutatud valemid T = 2 5. Arvutustabelid l (m) n t (s) T (s) T² (s²) (m/s²) - (m/s²) 1 0,668 15 24,63 1,64 2,69 9,80 0,06 2 0,595 15 23,41 1,56 2,43 9,67 0,07 3 0,750 15 25,97 1,73 2,99 9,90 0,16 4 0,789 15 26,84 1,79 3,20 9,73 0,01 5 0,587 15 23,22 1,55 2,40 9,66 0,08 6 0,778 15 26,72 1,78 3,...

Füüsika → Füüsika
151 allalaadimist
thumbnail
2
docx

Raskuskiirendus

Raskuskiirendus 1.Tööülesanne. Maa raskuskiirenduse määramine. 2.Töövahendid. Pendlid, sekundimõõtjad, mõõtelint. 3.Töö teoreetilised alused. Tahket keha,mis on kinnitatud raskuskeskmest krgemal asuvast punktist ja vib raskusju mjul vabalt vnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks.Idealiseeritud süsteemi,kus masspunkt vngub lpmatult peene venimatu ja kaaluta niidi otsas,nimetatakse matemaatiliseks pendliks. Matemaatilise pendli vnkeperiood T avaldub järgmiselt: kus l -pendli pikkus, g - raskuskiirendus. Katse l, m n t, s T, s T2, s2 g l, g- g l, nr. 1. 0,78 20 35,56 1,78 3,16 9,77 0,04 2. 0,56 20 30,50 1,53 2,33 9,51 0,25 3. 0,77 20 35,13 1,76 3,1 9,77 0,04 4. ...

Füüsika → Füüsika
244 allalaadimist
thumbnail
4
docx

FÜÜSIKA LANGEMINE JA KOSMOS

VIII OSA, 10. klass füüsika VABA LANGEMINE Juba üle 2300 aasta tagasi ehk täpsemalt aastatel 384-322 e. Kr. elanud vanakreeka filosoof Aristoteles arvas seda, et mida raskemad on kehad, seda kiiremini need allapoole liikudes planeedi keskpaiga poole püüavad jõuda. Gravitatsiooniks nimetatakse nähtust, kus mis avaldub kõikide kehade omavahelises vastikuses tõmbumises. Kuna kõikidel kehadel on mass, siis tänu sellele kehad tõmbuvadki teineteise poole. Jõudu, mis selle vastastikmõju tugevust iseloomustab, nimetatakse gravitatsioonijõuks. Kui teostada üks katse, milles võetakse üks teraskuul ja üks udusulg ning need samalt kõrguselt maapinna poole ühekorraga lahti lasta, siis jõuab enne maapinda puudutada teraskuul. Allakukkumine oleneb selles katses keha kokkupuutepinnast õhuga. Kui kehal on suur pind, siis see avaldab õhus liikuvale kehale suuremat takistavat mõju. Järelikult...

Füüsika → Megamaailma füüsika
14 allalaadimist
thumbnail
3
doc

Raskuskiirendus - labor

TALLINNA TEHNIKAKÕRGKOOL TALLINN COLLEGE OF ENGINEERING LABORATOORNE TÖÖ 2 Raskuskiirendus Õppeaines: füüsika Transpordi teaduskond Õpperühm: EA-11 B2 Üliõpilased: Risto Kägo Kristjan Kütt Kalmer Laine Kalmer Lastik Juhendaja: P. Otsnik Tallinn 2008 Tööülesanne Maa raskuskiirenduse määramine matemaatilise pendli abil. Töövahendid Pendel, sekundimõõtja, mõõdulint. Töö teoreetilised alused ja katseskeem Matemaatiliseks pendliks nimetatakse idealiseeritud süsteemi, kus masspunkt võngub lõpmatult peene venimatu ja kaaluta niidi otsas (joonis A). Matemaatilise pendli võnkeperiood avaldub järgmiselt: l T = 2 g Kus l on pendli pikkus, g - raskuskiirendus. Raskuskiirendus g avaldub matemaatilise pendli võnkeperioodi valemist järgmi...

Füüsika → Füüsika
643 allalaadimist
thumbnail
3
doc

Raskuskiirendus

TALLINNA TEHNIKAKÕRGKOOL TALLINN COLLEGE OF ENGINEERING LABORATOORNE TÖÖ 2 Raskuskiirendus Õppeaines: füüsika Transporditeaduskond Õpperühm: AT-11b Üliõpilased: Rait Land Raido Leemet Kaupo Kõrm Mikk Lohuväli Juhendaja: P. Otsnik Tallinn 2008 1. Tööülesanne Maa raskuskiirenduse määramine. 2. Töövahendid Pendlid, sekundimõõtja, mõõtelint. 3. Töö teoreetilised alused ja katseskeem Matemaatiliseks pendliks nimetatakse idealiseeritud süsteemi, kus masspunkt võngub lõpmatult peene venimatu ja kaaluta niidi otsas (joonis A). Matemaatilise pendli võnkeperiood avaldub järgmiselt: l T = 2 g Kus l on pendli pikkus, g - raskuskiirendus. Raskuskiirendus g avaldub matemaatilise pendli võnkeperioodi valemist järgmiselt: ...

Füüsika → Füüsika
196 allalaadimist
thumbnail
5
doc

RASKUSKIIRENDUS

RASKUSKIIRENDUS LABORATOORNE TÖÖ Õppeaines: Füüsika I Ehitusteaduskond Teedeehitus Õpperühm: KTEI11 Tallinn 2010 Laboritöö aruanne 1. Töö ülesanne Maa raskuskiirenduse määramine. 2. Töö vahendid Pendel, sekundimõõtja, mõõtelint. 3. Töö teoreetilised alused. Joonised. Tahket keha, mis on kinnitatud raskuskeskmest kõrgemal asuvast punktist ja võib raskusjõu mõjul vabalt võnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks. Idealiseeritud süsteemi, kus masspunkt võngub lõpmatult peene venimatu ja kaaluta niidi otsas nimetatakse matemaatiliseks pendliks. Selle laboritöö käigus arvutatakse just matemaatilist pendlit, mille arvutamise valemiks on . Valem kehtib ainult väikeste võnkeamplituudide korral, kui võnkumist võib lugeda harmooniliseks. Matematelise pendlina kasutame antud töös peenikese ja kerge niidi otsa kinnitatud kuulikest (vt joonis 1). ...

Filosoofia → Filosoofia
143 allalaadimist
thumbnail
2
docx

Ühtlaselt muutuv sirgliikumine

Ühtlaselt muutuv sirgliikumine Ühtlaselt muutuvaks liikumiseks nimetatakse liikumist, mille puhul keha kiirus mistahes võrdseis ajavahemikes muutub võrdsete suuruste võrra. Trajektoor on sirge, kuid kiirus muutub nii, et kiiruse muutus mistahes võrdsetes ajavahemikes on ühesugune ehk kiirendus on muutumatu. Niha võrdub teepikkusega. Ühtlaselt kiireneval liikumisel on kiirendus positiivne (a>0) ühtlaselt aeglustuval liikumisel aga negatiivne (a<0). Ilma algkiiruseta liikumisel on v = at. Algkiirusega v0 liikudes on v =v0 ± at. Kuidas leida läbitud teepikkust, kui kiirus muutub pidevalt. Tuleks leida keskmine kiirus. Kui mingi suurus muutub ühtlaselt, siis keskväärtuse leidmiseks leitakse lõpp- ja algväärtuste summa ning jagatakse kahega. v k = (v 0 + v ) / 2 = (v Kui on teada liikumise keskmine kiirus ja kestus, siis võib igasugusel muutuval liikumisel läbitud teepikkuse leida valemist S=v k t. Ühtlasel muutuval liikumisel võrdub keskmin...

Füüsika → Füüsika
54 allalaadimist
thumbnail
10
docx

RASKUSKIIRENDUS

Anton Adoson Roman Ibadov Rauno Alp Gert Elmik RASKUSKIIRENDUS LABORITÖÖ NR. 2 Õppeaines: FÜÜSIKA Transporditeaduskond Õpperühm: AT 11/21 Juhendaja: dotsent: Peeter Otsnik Esitamise kuupäev: 15.10.2015 /Allkirjad/ Tallinn 2015 Aruanne 1. Tööülesanne: Maa raskuskiirenduse määramine matemaatilise pendli abil. 2. Töövahendid: Pendel, sekundimõõtja, mõõdulint. 3. Töö teoreetilised alused: Tahket keha,mis on kinnitatud raskuskeskmest kōrgemal asuvast punktist ja vōib raskusjōu mōjul vabalt vōnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks.Idealiseeritud süsteemi,kus masspunkt vōngub lōpmatult peene venimatu ...

Füüsika → Füüsika
49 allalaadimist
thumbnail
10
docx

Laboratoorsed tööd (KMI 11)

RASKUSKIIRENDUS. 1. Tööülesanne. Maa raskuskiirenduse määramine. 2. Töövahendid. Pendlid, sekundimõõtjad, mõõtelint. 3. Töö teoreetilised alused. Tahket keha, mis on kinnitatud raskuskeskmest kõrgemal asuvast punktist ja võib raskusjõu mõjul vabalt võnkuda seda punkti läbiva telje ümber nimetatakse füüsikaliseks pendliks. Idealiseeritud süsteemi, kus masspunkt võngub lõpmatult venimatu ja kaaluta niidi otsas, nimetatakse matemaatiliseks pendliks. Matemaatilise pendli vnkeperiood T avaldub järgmiselt: kus l - pendli pikkus, g - raskuskiirendus. Valem kehtib ainult väikeste vonkeamplituudide korral,kui vonkumist voib lugeda harmooniliseks.Matemaatilise pendlina kasutame antud töös peenikese ja kerge niidi otsa kinnitatud kuulikest (joonis A). Füüsikalise pendli (joonis B) võnkeperiood T on arvutatav valemiga: kus I on pendli inertsmoment pöörlemistelje suhtes, a - masskeskme kaugus ...

Füüsika → Füüsika
20 allalaadimist
thumbnail
10
pdf

Füüsika tähistused

ALATI JA IGAL POOL: i - x-telje suunaline ühikvektor j - y-telje suunaline ühikvektor k - z-telje suunaline ühikvektor Sirgliikumine x ­ asukoha koordinaat v ­ kiirus (märgiga suurus) vav ­ keskmine kiirus a ­ kiirendus (märgiga suurus) aav ­ keskmine kiirendus x0 ­ liikumise alguspunkt v0 ­ algkiirus Liikumine ruumis r ­ punkti kohavektor r ­ nihkevektor v ­ kiiruse suurus s ­ tee pikkus t ­ aeg v ­ kiirusvektor vav ­ keskmine kiirus vektorina a ­ kiirendusvektor a k ­ keskmine kiirendus vektorina at ­ kiirenduse tangentsiaalkomponent at ­ kiirenduse tangentsiaalkomponendi suurus a n ­ kiirenduse normaalkomponent an ­ kiirenduse normaalkomponendi suurus R ­ kõverusraadius Ühtlane ringliikumine r ­ ringjoone raadius 0 ­ algfaas (algnurk) ­ pöördenurk t ­ ajavahemik ­ nurkkiirus s ­ kaare pikkus (tee pikkus) v ­ (joon)kiiruse suurus t ­ ajavahemik juhul, kui ...

Füüsika → Füüsika
45 allalaadimist
thumbnail
8
rtf

Jõud

Jõud Jõud on kehade vastastikuse toime mõõt, mis avaldub kas keha liikumisolukorra muutuses või keha deformeerumises. Jõud võime jaotada kaheks - välisjõud ja sisejõud. Välisjõududeks loetakse vaadeldavast kehade süsteemist väljaspool olevate kehade toimet - aktiivsed jõud ehk koormused ja nendest põhjustatud toereaktsioonid. Süsteemi sisejõud on süsteemi kuuluvate kehade vaheline kontaktjõud, aga ka mõttelise lõikega kehast eraldatud osade vaheline jõud. (Rohusaar, 2005). SI-süsteemis on jõu ühikuks njuuton (N). 1 N on jõud,mis tekitab kehale massiga 1 kg kiirenduse 1 m/s2. Antud ühik on otseselt tuletatav Newtoni II seadusest: F=m·a Jõud = mass korda kiirendus N = kg · m/s2 Nagu me juba füüsikast teame, siis maapinna lähedal mõjub gravitatsioon ehk raskuskiirendus. Vastavalt ülemaailmsele gravitatsi...

Füüsika → Füüsika
3 allalaadimist
thumbnail
1
docx

Füüsika mõistete spikker

Punktmass on keha, mille mõõtmeid antud liikumistingimustes ei tule arvestadaTaustsüsteem on kella ja koordinaatsüsteemiga varustatud keha, mille suhtes liikumist vaadeldakseNihe on suunatud sirglõik, mis ühendab keha algasukoha lõppasukohaga Kiirus ühtlasel sirgjoonelisel liikumisel näitab, millise nihke sooritab keha ajaühikusÜhtlane sirgjooneline liikumine on selline liikumine, mille puhul keha sooritab mistahes ajavahemikes võrdsed nihkedKiirendus ühtlaselt muutuval liikumisel näitab, kui palju muutub keha kiirus ajaühikusÜhtlaselt muutuv liikumine on liikumine, mille puhul keha kiirus mistahes võrdsetes ajavahemikes muutub võrdse suuruse võrraKiirendus ühtlasel ringliikumisel on suunatud ringjoone keskpunkti poole ja on arvuliselt võrdne a=v2/rMass iseloomustab keha inertsust ja vastastikust külgetõmmetJõud iseloomustab kehade vastastikmõju tugevustResultantjõud ehk jõudude vektoriaalne summa on jõud, mille mõju kehale oleks samasu...

Füüsika → Füüsika
8 allalaadimist
thumbnail
5
doc

Füüsika labor 1

Korrapärase kujuga katsekeha tiheduse määramine Töö ülesanne: Tutvumine tehniliste kaaludega. Katsekeha mõõtmete mõõtmine nihiku abil. Katsekeha ruumala ja tiheduse arvutamine. Töövahendid: Kaal, nihik, mõõdetavad esemed. Töö teoreetilised alused: Tutvumine tehniliste kaaludega. Tehnilised kaalud on määratud hinnaliste materjalide või analüüsiks määratud materjalide kaalumiseks. Oma konstruktsioonilt on nad võrd õlgsed kangkaalud. Kaalumisel tuleb silmas pidada, et koormisi võime lisada või ära võtta vaid arreteeritud kaaludel. Arreteerimine toimub kaalude keskel asuvast vastavast kruvist. Nüüdisajal kasutatakse juba palju elektromehaanilisi või elektroonseid kaalusid, mille täpsused on kõrged. Katsekeha tiheduse same arvutada valemi D=m/v abil. Kus D ­ Katsekeha materjali tihedus. m ­ Katsekeha mass. v ­ Katsekeha ruumala. Torukujulise katsekeha ruumala arvutame kui välisdiameetriga silindr...

Füüsika → Füüsika
354 allalaadimist
thumbnail
1
doc

Mehaanika

KORDAMINE 10 klass MEHAANIKA LIIKUMISED Ühtlane sirgjooneline liikumine : liikumisvõrrand,liikumisgraafik, kiiruse, teepikkuse ja aja vaheline seos, nihe, nihkevektorite liitmine , kiiruste liitmine , keskmine kiirus Ülesanne: Kopter lendas tuulevaikse ilmaga kiirusega 90 km/h täpselt põhja suunas. Leia kopteri kiirus ja kurss, kui puhub loodetuul meridiaani suhtes 45º nurga all. Tuule kiirus on 10 m/s. Ühtlaselt muutuv sirgjooneline liikumine : liikumisvõrrand, liikumisgraafik, kiiruse võrrand, kiiruse graafik, kiirendus, nihe , vaba langemine, vaba langemise kiirendus. Ülesanne: Liikumist alustanud jalgrattur sõitis esimesed 4 s kiirendusega 1 m/s2, seejärel liikus 0,1 minutit ühtlaselt ja viimased 20 m ühtlaselt aeglustuvalt kuni peatumiseni. Leia keskmine kiirus kogu liikumise vältel. Kirjuta liikumisvõrrandid, nihke võrrandid, kiiruste võrrandid, kiirenduste võrrandid. Visanda graafikud. Ülesanne : Veoauto liikumisvõrrand on x = ...

Füüsika → Füüsika
27 allalaadimist
thumbnail
4
docx

KORRAPÄRASE KUJUGA KATSEKEHA TIHEDUSE MÄÄRAMINE.

KORRAPÄRASE KUJUGA KATSEKEHA TIHEDUSE MÄÄRAMINE. 1.Tööülesanne. Tutvumine tehniliste kaaludega või elektroonilise kaaluga.Katsekeha mtmete mtmine nihiku abil.Katsekeha ruumala ja tiheduse arvutamine. 2.Töövahendid. Tehnilised kaalud või elektrooniline kaal,nihikud,mdetavad esemed. 3.Töö teoreetilised alused. Nihikuga mtmist vaata ja korda üldmõõtmiste töö järgi. Tutvumine tehniliste kaaludega.Tehnilised kaalud on määratud hinnaliste materjalide vi analüüsiks määratud materjalide kaalumiseks.Oma konstruktsioonilt on nad vrdlgsed kangkaalud.Kaalumisel tuleb silmaspidada,et koormisi vime lisada vi ära vtta vaid arreteeritud kaaludel.Arreteerimine toimub kaalude keskel asuvast vastavast kruvist.Võime ka kasutada elektromehaanilisi vi elektroonseid kaalusid,mille täpsused on krged. Katsekeha tiheduse saame arvutada valemi D = m /V abil, kus D - katsekeha materjali tihedus m - katsekeha mass V - katsekeha ruumala Torukuj...

Füüsika → Aineehitus
1 allalaadimist
thumbnail
2
doc

Dünaamika

Füüsika 1. Newton 1 seadus ütleb, et vastastikmõju puudumisel või vastastikmõjude kompenseerumisel on keha kas paigal või liigub ühtlaselt ja sirgjooneliselt 2. Inertsiks nim. nähtust, kus kõik kehad püüavad oma liikumise kiirust säilitada. 3. Inertsiaalsed taustsüsteemid on taustsüsteemid, kus kehtivad inertsiseadus(newton 1) ja teised mehaanika seadused. Mõõtmisvigade piires võib inertsiaalseiks lugeda Maaga seotud taustsüsteeme ja kõiki Maa suhtes kiirenduseta liikuvate kehadega seotud taustsüsteeme. Rangelt võttes ei ole Maaga seotud taustsüsteemid inertsiaalsed, sest meie planeet pöörleb ja tiirleb samal ajal ka ümber Päikese. 4. Keha inertsuseks nim. omadust, mis seisneb selles, et keha kiiruse muutmiseks antud suuruse võrra peab teise keha mõju esimesele kestma teatud aja. 5. Keha mass on keha inertsuse mõõduks igapäevaelus tuntud füüsikaline suurus. Tema ühikuks on 1 kg = 1 l ja tähis on m. 6...

Füüsika → Füüsika
53 allalaadimist
thumbnail
3
docx

Füüsika valemid

Kepleri 3 seadus – Iga planeedi tiirlemisperioodi(aasta kestuse ruut on võrdeline orbiidi suure pooltelje kuubiga. Planeet, mille orbiidi raadius on 4 korda suurem Maa omast, teeb tiiru ümber päikese 8 aastaga. v – keskmine kiirus ; s-läbitud vahemaa; t-aeg a-keskmine kiirendus, v1-algkiirus, v2-lõppkiirus, t-aeg s-teepikkus, mille konstantse kiirendusega liikuv keha läbib, kui alustab paigalseisust. Liikumishulk – keha kiiruse ja massi korrutis Kui kaks keha põrkuvad, võib liikumishulk küll ühelt kehalt teisele üle kanduda, kuid nende summaarne liikumishulk jääb muutumatuks m-liikuva keha mass; v-kiirus; p-liikumishulk -> isoleeritud süsteemi liikumishulk ei muutu Jõuvektor F – keha massi ja kiirenduse korrutis. F-jõuvektor(Njuuton); m-keha mass; a-kiirendus Newtoni 1 seadus: Kui kehale mõjuvad jõud on tasakaalus, liigub keha ühtlaselt & sirgjooneliselt. Newtoni 2 seadus: Kiirendus o...

Füüsika → Füüsika
5 allalaadimist
thumbnail
3
doc

Võnkliikumine ja gravitatsioonijõud

Võnkliikumine Võnkliikumiseks ehk võnkumiseks nimetatakse liikumist, mis kordub kindla ajavahemiku järel. Pendli amplituudasendiks nimetatakse pendli asendit, kus koormis pöördub tagasi. Tasakaaluasendiks nimetatakse pendli asendit, kus koormis püsib paigal. Amplituudiks nimetatakse amplituudasendi kaugust tasakaaluasendist. Täisvõnkeks nimetatakse pendli liikumist ühest amplituudasendist teise ja tagasi samasse asendisse. Võnkeperioodiks nimetatakse ajavahemikku, mis kulub ühe täisvõnke sooritamiseks. Sageduseks nimetatakse täisvõngete arvu, mida pendel sooritab ühe sekundi jooksul. Võnkesagedus=1/võnkeperioodiga Sagedus=T F=1/T Sagedus näitab võngete arvu ühes sekundis. Sagedusühik on 1Hz. Sagedus on üks herts, kui pendel teeb ühe täisvõnke ühe sekundi jooksul 1Hz=1/1s Keha inertsus Keha mass on keha keha inertsust väljendav füüsikaline suurus. Keha inertsuseks nimetatakse keha omadust, millest sõltub tema kiirendus vastasmõjus teiste...

Füüsika → Füüsika
84 allalaadimist
thumbnail
3
odt

GEODEESIA EKSAMI VASTUSED

GEODEESIA EKSAMI KOKKUVÕTE 1. Geodeesia on teadusharu, mis vaatluste ja mõõdistamiste tulemusena määrab terve maakera kuju ja suuruse, objektide täpsed asukohad ja ka raskusjõu väärtused ja selle muutused ajas. Teiste erialadega on seotud: füüsika, matemaatika, geograafia, geofüüsika, astronoomia, kartograafia jne. 2. Geoid- keha, mille pinnaks on merede ja ookeanide rahulikus olekus pind, mida on mõtteliselt laiendatud mandrite alla ning mille raskuskiirenduse väärtused on kõikides punktides ühesugused. Ekvaatoriaal-pooltelg 6 378 137m Polaartelg 6 356 752m Ekvatoriaal P 40 075 km Keskmine R 6 371 km 3. Laiuskoordinaat (j) on nurk ekvaatori ja antud punkti läbiva paralleeli vahel. Ekvaatorist põhja poole jäävad laiused on põhjalaiused (muutuvad ekvaatorilt 0° kuni põhjapooluseni 90°N) ja lõuna poole jäävad on lõunalaiused (0°...90° S). Pikkuskoordinaat (l) on kokkuleppelise nullmeridiaani ja...

Geograafia → Geodeesia
271 allalaadimist
thumbnail
7
docx

Kehade vaba langemine (referaat)

Referaat Kehade vaba langemine Tallinn 2011 Sisukord 1) Aristoteles 2) Galileo Galilei 3) Vaba langemine 4) Galileo katse 5) Valem 6) Sisukord Aristoteles(384 eKr-322 eKr) oli Vanakreeka filosoof ja õpetlane. Ta sündis arsti perekonnas ning sai oma füüsikaalased teadmised Ateenas Platoni juures. Hiljem oli aga ta ise Aleksander Suure kasvastaja ning rajas ka Ateenasse filosoofiakooli. Tema oligi esimene inimene kes hakkas uurima kehade vaba langemist ning seda juba üle 2300 aasta tagasi. Aristoteles oli esimene, kes väitis, et raskemad esemed kukuvad kiiremini kui kergemad. Oma väite tõestamiseks Aristoteles katseid ei teinud, kuid mõttetark oli väga kuulus ja austatud nii, et keegi ei hakanud tema sõnades kahtlema. Ega Aristoteles oma väites väga ei eksinudki. On ju tõsi, et kui ühelt...

Füüsika → Füüsika
18 allalaadimist
thumbnail
4
pdf

Füüsikaline maailmapilt lahendused IV

Ülesanded IV Lahendusi 10. Ristkülikulise kujuga parv, mõõtmetega 5 m korda 2 m, ujub jões. Leia: a) kui palju sügavamale vajub parv, kui talle laaditakse 0,4 t massiga hobune; b) mitu hobust saab laadida parvele, kui parv võib koorma laadimise tagajärjel vajuda vaid 15 cm. parve pikkus a = 5m parve laius b = 2m hobuse mass m = 0, 4t = 400kg vee tihedus vesi = 1000kg m3 parve vajumissügavus h2 = 15cm = 0,15m a) parve vajumissügavus h1 = ? b) maksimaalne hobuste arv n2 = ? Lahendus a) Kui parvele läheb hobune, siis parv vajub parajasti nii palju, et väljatõrjutud vee kaal Pvesi = vesiVvesi g võrdub hobuse kaaluga Phobune = mg : vesiVvesi g = mg vesiVvesi = m Arvestame, et väljatõrjutud vee ruumala on parve pindala S = ab ja parve vajumissügavuse h1 korrutis ning avaldame vajumissügavuse h1 ...

Füüsika → Füüsikaline maailmapilt
36 allalaadimist
thumbnail
3
docx

Füüsika KT1

· Mis on kohavektor? Mis on nihkevektor? Kuidas nad on omavahel seotud? Kohavektor on tõmmatud koordinaatide alguspunktist antud punkti. Nihkevektor on liikumise alguspunktist lõpp-punkti tõmmatud vektor. (nihkevektor on kohavektorite muut, nihkevektor tähistab kohavektori juurdekasvu ajavahemikus delta-t) · Näidata, et konstantse kiirendusega liikudes avaldub kiirus ajahetkel t järgmise valemi kaudu v=v0+a*t, kus v0 on keha kiirus ajahetkel t=0, a on keha kiirendus. v= = a*t + c (integreerimiskonstant, antud juhul v0) = a*t + v0 · Milline liikumine on vaba langemine, kas konstantse kiirusega, konstantse kiirendusega või lihtsalt kiirendusega liikumine? (Põhjendada) Konstantse kiirendusega, sest a=g=9,8 m/s2 · Kuidas on seotud nurkkiirus ja pöördenurk? Millises suunas on need vektorid suunatud? Nurkkiirus näitab ühtlase pöörlemise korral nurka, mille võrra keha ajaühiku jooksul pöördub. (parema käe kruvireegel) · Kuidas on seotud pu...

Füüsika → Füüsika
578 allalaadimist
thumbnail
2
docx

Potentsiaalne energia on süsteemi energia

Potentsiaalne energia on süsteemi energia, mis on tingitud keha Raskusjõud on Maa (või mõne muu suure taevakeha) poolt selle Pöörlemine ehk pöördliikumine on keha ainepunktide ringliikumine asendist ja mõjust süsteemi teiste kehade suhtes ja kõigi süsteemis läheduses paiknevale palju väiksemale kehale avaldatav ümber kehaga seotud kahe ainepunkti. Neid punkte ühendavat sirget olevatele kehadele vastastikku mõjuvatest jõududest välises gravitatsioonijõud. nimetatakse pöörlemisteljeks. Tasandil saab keha pöörelda ümber jõuväljas. Seega võrdub süsteemi potentsiaalne energia Raskusjõud Maa gravitatsiooniväljas on vektoriaalne suurus, mis mõne selle tasandi punkti. potentsiaalsete jõududega, mis mõjuvad süsteemi kõigile osadele (nii avaldub raskuskiirenduse (mis võrdub gravitatsioonivälja Pöörlemine on...

Füüsika → Füüsika
2 allalaadimist
thumbnail
10
docx

Füüsika I kordamisküsimused

I kontrolltöö kordamisküsimused (YFR 0011) 1. Kuidas leida kahe vektori liitmisel tekkiva vektori pikkust kui on teada liidetavate vektorite pikkused. Liidetavad vektorid on o a) samasuunalised; liitmine nt a(2;3;4) + b(2;4;1) = c(4;7;5) o b) vastassuunalised; sama o c) üksteisega risti. 2. Kuidas peavad olema vektorid suunatud, et nende o a) skalaarkorrutis oleks 0; risti o b) vektorkorrutis oleks 0? Samas suunas/ vastassuunas 3. Mis on kohavektor? Mis on nihkevektor? Kuidas nad on omavahel seotud? Kohavektor on vektor, mis on tõmmatud koordinaadi alguspunktist etteantud punkti. Nihkevektor on vektor, mis on tõmmatud liikumise alguspunktist liikumise lõpp-punkti. Nihkevektor on kohavektorite muut, nihkevektor tähistab kohavektori juurdekasvu ajavahemikus delta-t 4. Mis on nihkevektor? Mis on trajektoor? Millal ühtib keha trajektoor nihkevektoriga? Nihkevektor on ...

Füüsika → Füüsika
84 allalaadimist
thumbnail
18
pdf

Füüsika I kodune töö TKTK

Edited with the trial version of Foxit Advanced PDF Editor To remove this notice, visit: www.foxitsoftware.com/shopping Füüsika I kodune töö Ülesanne 1 Vabalt langev keha jõudis maapinnale langemise alguspunktist 10 s jooksul. Kui kõrge oli keha maapinnast, kui langemise algusest oli möödunud 5 sekundit. t1 m := 5s a := g = 9.807 2 t 2 := 10s v0 := 0 ...

Füüsika → Füüsika
45 allalaadimist
thumbnail
15
doc

Dünaamika

Dünaamika Dünaamika on mehaanika osa, milles uuritakse kehade liikumise põhjusi. Loodi 17. sajandil. Selle looja on Isaac Newton (1642-1727) 1. Newtoni esimene seadus. Küsimus: Milline on keha loomulik liikumisolek? (kui talle ei mõju teised kehad) Maapinnal asuva keha loomulik olek on paigalseis. Ideaalsetes tingimustes liigub keha ühtlaselt ja sirgjooneliselt või seisab paigal. Newtoni I seadus (esialgne sõnastus): Iga keha säilitab paigalseisu või ühtlase sirgjoonelise liikumise oleku, kuni ja kuivõrd kehale mõjuv jõud seda olekut ei muuda. Newtoni I seadus ei kehti kiirendusega liikuvas taustsüsteemis. Inertsus on keha ühtlase sirgjoonelise liikumise või paigaoleku säilimise omadus. Inertsus on keha omadust, mis seisneb selles, et keha kiiruse muutumiseks kulub teatud aeg. Keha inertsust iseloomustav suurus on mass. Massi mõõtühik on gramm. Inertsiaalsüsteemid on taustsüsteemid, milles kehtib Newtoni I seadus. Küsimus: ...

Füüsika → Füüsika
55 allalaadimist
thumbnail
24
docx

Iseseisvad tööd: HÜDRAULIKA JA PNEUMAATIKA

ISESEISVAD TÖÖD Õppeaines: HÜDRAULIKA JA PNEUMAATIKA SISUKORD SISUKORD....................................................................................................................... 1 1.ISESEISEV TÖÖ NR.1.................................................................................................... 3 1.1Ülesanne................................................................................................................ 3 1.2Lähteandmed......................................................................................................... 3 1.3Lahendus................................................................................................................ 3 1.4Vastus..................................................................................................................... 4 2.ISESEISEV TÖÖ NR. 2.......................

Mehaanika → Hüdraulika ja pneumaatika
77 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun