Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

"-punkti-kaugus-sirgest-ja-tasandist" - 15 õppematerjali

thumbnail
26
docx

Lineaaralgebra eksami kordamisküsimused vastused

1. Ristkoordinaadid- kui ruumis on antud ristkordinaadisüsteem, siis ruumi iga punkt P on üheselt määratud ristkordinaatidega x,y,z, kus x on punkti P ristprojektsioon absissteljele, y on punkti P ristprojektsioon ordinaattelele ja z on punkti P ristprojektsioon aplikaattelele P(x,y,z) 2. Kahe punkti vaheline kaugus- Kui P1(x1,y1,z1), P2(x2,y2,z2) on ruumi punktid siis kaugus d punktide P1 ja P2 vahel on määratud valemiga √ 2 2 d= ( x 2−x 1 ) + ( y 2− y 1 ) + ( z 2 + z 1) 2 3. Vektori mõiste-Vektor on suunatud lõik millel on kindel algus- ja lõpp-punkt. 4. Nullvektor-Vektorit, mille pikkus on null, nimetatakse nullvektoriks ja tähistatakse sümboliga . Nullvektori suund on määramata. 5. Ühikvektor- Kui vektori pikkus on 1 6. vektorite liitmine-rööpkülikureegel: Vektorite a ja b summaks nimetatakse niisugust v...

Matemaatika → Matemaatiline analüüs 1
124 allalaadimist
thumbnail
2
doc

Sirge ja tasand

SIRGE JA TASANDI VÕRRANDID Sirge tasandil Sirge ruumis Tasand Parameetrili ne vektorvõrra s : AX = ts t R : AX = t1u + t 2 v t1 , t 2 R nd --||-- koha- vektorite s : x = a + ts t R : x = a + t1 u + t 2 v t1 , t 2 R kaudu Parameetrili sed x1 = a1 + ts1 x1 = a1 + t1u1 + t 2 v1 vektorvõrra x1 = a1 + ts1 ...

Matemaatika → Matemaatika
111 allalaadimist
thumbnail
2
doc

Lineaar algebra teooria2

Kompleksarvud Kompleksarvu mõiste. Kompleksarve on kombeks tähistada väikese tähega z. Kompleksarvudel on mitmeid esitusviise ehk kujusid. Kõige levinum on kompleksarvu algebraline kuju. Def Kompleksarvuks (algebralisel kujul) nimetatakse arvu z = a + ib, kus a ja b on reaalarvud ja i on imaginaar ühik. Imaginaarühik, mida tähistatakse i, defi'kse võrdusega i2 = -1.Kõigi kompleksarvude hulka tähistatakse C. Def Kompleksarvu z = a + ib C korral nim arvu a R selle kompleksarvu reaalosax ja arvu b R nim selle kompleksarvu imaginaarosaks. Kaks kompleksarvu on võrdsed parajasti siis, kui 1) on võrdsed nende reaalosad, 2) on võrdsed nende imaginaarosad. Algebraline kuju on kompleksarvu kujudest kõige levinum. Kuid on ka teisi esitusviise. Kompleksarve nim arvudex, sest nendega saab sooritada aritmeetilisi tehteid: liitmist, lahutamist, korrutamist, jagamist. Komar liitmine ja lahutamine on kõige otstarbekam teha algebralisel kujul. Def. Ko...

Matemaatika → Lineaaralgebra
478 allalaadimist
thumbnail
28
pdf

Lineaaralgebra ja analüütiline geomeetria konspekt

Eksami kordamisküsimused Lineaaralgebra ja analüütiline geomeetria (2015- 2016 aasta sügis) Ristkoordinaadid. Kui ruumis on antud ristkoordinaadisüsteem, siis ruumi iga punkt P on üheselt määrastud ristkoordinaatidega x, y, z, kus x on punkti P ristprojektsioon abstsissteljele, y on punkti P ristprojektsioon ordinaatteljele ja z on punkti P ristprojektsioon aplikaateljele. Kirjutame P(x, y, z). Kahe punkti vaheline kaugus. Kui P1(x1, y1, z1), P2(x2, y2, z2) on ruumi punktid, siis kaugus d punktide P1 ja P2 vahel on määratud valemiga Vektori mõiste Vektor on suunatud lõik alguspunktiga punktis A ja lõpp-punktiga punktis B. Nullvektor Eukleidilises ruumis (näiteks tasandil) on nullvektoriks määramata suunaga vektor, mille pikkus on null. Ühikvektor Kui vektori pikkus on 1, siis teda nimetatakse ühikvektoriks. Vektorite liitmine ja lahutamine Lahutamine toimub sama põhimõtte järgi. Reaalarvu ja vektori korrutis. Vektori pikk...

Matemaatika → Algebra ja analüütiline...
105 allalaadimist
thumbnail
3
docx

Lineaarkujutus ja teisendus 3. KT

Lineaarkujutus ja teisendus. Olgu hulgad V, W vektorruumid. Aksioom1 Kahe vektorruumi V ja W korral määratud kujutust f: V W nimetatakse lineaarkujutuseks, kui on täidetud tingimus : f ( a + b) = f (a) + f (b). Järeldus1 Olgu = = 1 f ( a + b) = f ( a ) + f ( b ) lineaarkujutuse distributiivsus vektorite liitmise suhtes. Järeldus2 = 0 f ( a ) = f (a ) lineaarkujutuse kommutatiivsus skalaariga korrutamise suhtes. Järeldus3 = = 0 f ( 0 ) = 0 Aksioom2 Vektorruumi V korral määratud lineaarset kujutust f : V V nimetatakse selle vektorruumi V lineaarteisenduseks vektorruumist V iseendasse tagasi. Lineaarkujutuste f ja g korral lepitakse kokku rääkida ka nende summast f + g ja kujutuste korrutamisest reaalarvuga f. Lineaarkujutiste liitmisel ja korrutamis...

Matemaatika → Matemaatiline analüüs
437 allalaadimist
thumbnail
81
pdf

Kõrgem matemaatika / lineaaralgebra

Kõrgema matemaatika kordamisküsimused 1. Maatriksi definitsioon. Maatriksi elemendid. Lineaarsed tehted maatriksitega (liitmine ja skalaariga korrutamine). Nullmaatriks. Transponeeritud maatriks 2. Maatriksite korrutise definitsioon. Korrutamise omadused ja seosed lineaarsete tehete ning korrutamise vahel. Ühikmaatriks. 3. Teist ja kolmandat järku determinandid. 4. Permutatsiooni definitsioon. Inversiooni definitsioon. n-järku determinandi definitsioon. Determinandi põhiomadused 5. Maatriksi elemendi minor. Alamdeterminant. Determinandi arendus rea ja veeru järgi. Determinantide teooria põhivalem. 6. Regulaarse maatriksi mõiste. Pöördmaatriksi definitsioon ja elementide leidmise eeskiri. Pöördmaatriksi omadused. 7. Lineaarse võrrandisüsteemi definitsioon. Võrrandisüsteemi kordajad, vabaliikmed, lahend. Vasturääkiv, kooskõlaline, määratu süsteem. Süsteemi maatriks ja laiendatud ma...

Matemaatika → Algebra I
198 allalaadimist
thumbnail
7
doc

Kõrgem matemaatika

Kõrgema matemaatika kordamisküsimused eksamiks 1. Kahe vektori skalaar- ja vektorkorrutis Vektoriks nim suunaga ja pikkusega sirglõiku. Tähistatakse , kus A ja B tähistavad vastavalt vektori algus- ja lõpp-punkti. Vektori mooduliks nim vektori pikkust. Tähistatakse . Ühikvektoriks nim vektorit, mille pikkus võrdub ühega. . Nullvektoriks nim vektorit, mille alguspunkt ja lõpppunkt ühtivad. . Vabavektoriks nim vektorit, mille alguspunkt ei ole fikseeritud, st vektori asendit võib paralleellükke abil muuta. Kahte vektorit nim võrdseks, kui nad on võrdsete moodulitega ning samasuunalised. Vektorite võrdsus erineb lõikude võrdsusest. Vektoreid nim kollineaarseteks, kui nad pärast ühisesse alguspunkti viimist asuvad ühel ja samal sirgel. Võivad olla sama või vastassuunalised. . Vektoreid nim komplanaarseteks, kui nad pärast ühisesse alguspunkti viimist asuv...

Matemaatika → Kõrgem matemaatika
477 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

ANALÜÜTILISE GEOMEETRIA VALEMID 1. Vektori koordinaadid a = Xi +Yj + Zk = ( X ; Y ; Z ) 2. Vektori koordinaatide seos lõpp- ja alguspunktide koordinaatidega AB = ( x B ­ x A ; y B ­ y A ; z B ­ z A ) 3. Vektori pikkus a = X +Y +Z 2 2 2 X Y Z cos = ; cos = ; cos = 4. Vektori suuna koosinused a a a cos 2 + cos 2 + cos 2 = 1 5. Vektorite võrdsus a = b, ( X 1 = X 2 ; Y1 = Y2 ; Z 1 = Z 2 ) 6. Vektorite summa c = a + b, ( X 3 = X 1 + X 2 ; Y3 = Y1 + Y2 ; Z 3 = Z 1 + Z 2 ) 7. Vektori korrutamine skalaariga b = na, ( X 2 = nX 1 ; Y2 = nY1 ; Z 2 = nZ1 ) X 1 Y1 Z...

Matemaatika → Analüütiline geomeetria
39 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

ANALÜÜTILISE GEOMEETRIA VALEMID 1. Vektori koordinaadid a = Xi +Yj + Zk = ( X ; Y ; Z ) 2. Vektori koordinaatide seos lõpp- ja alguspunktide koordinaatidega AB = ( x B ­ x A ; y B ­ y A ; z B ­ z A ) 3. Vektori pikkus a = X +Y +Z 2 2 2 X Y Z cos = ; cos = ; cos = 4. Vektori suuna koosinused a a a cos 2 + cos 2 + cos 2 = 1 5. Vektorite võrdsus a = b, ( X 1 = X 2 ; Y1 = Y2 ; Z 1 = Z 2 ) 6. Vektorite summa c = a + b, ( X 3 = X 1 + X 2 ; Y3 = Y1 + Y2 ; Z 3 = Z 1 + Z 2 ) 7. Vektori korrutamine skalaariga b = na, ( X 2 = nX 1 ; Y2 = nY1 ; Z 2 = nZ1 ) X 1 Y1 Z...

Matemaatika → Analüütiline geomeetria
140 allalaadimist
thumbnail
25
doc

Algebra ja geomeetria kordamine

MAATRIKS: Maatriks ­ nimetatakse ümarsulgudesse paigutatud reaalarvude tabelit, milles on eristatavad read ja veerud. Maatriksi mõõtmed ­ Maatriksit, milles on m rida ja n veergu nimetatakse täpsemalt (m,n)- maatriksiks ning arvupaari (m,n) selle maatriksi mõõtmeteks. Maatriksi järk ­ Omadus, mis esineb ainult ruutmaatriksil: Näiteks Mat(n,n) nim. n-järku maatriksiks. Maatriksi elemendid ­nimetatakse reaalarve, milledest maatriks koosneb. Maatriksi ja maatriksite hulga tähistused ­ Maatrikseid tähistatakse tavaliselt suurte ladina tähtedega: A, B,....X, Y, Z. Maatriksite elemente tähistatakse vastavate väikeste ladina tähtedega, mis võivad olla varustatud ka indeksitega: a, b, c, jne. Kõigi (kõikvõimalike mõõtmetega) maatriksite hulka tähistame edaspidi Mat abil ning kõigi (m, n)-maatriksite hulka tähistame edaspidi Mat(m, n) abil. Ruutmaatriks ­maatriks, mille ridade arv on võrdne veergude arvuga, s.t. m=n Ristkülikmaatriks ­maatriks,...

Matemaatika → Algebra ja geomeetria
62 allalaadimist
thumbnail
5
doc

algebra konspekt

Sirged ja tasandid Joonte ja pindade võrrandite mõiste Võrdust F(x,y,z)=0 nim pinna S võrrandiks antud koordinaatide süsteemis, kui selle pinna kõikide punktide koordinadid rahuldavad seda võrdust ja nende punktide koordinadid, mis ei asu sellel pinnal, ei rahulda seda võrdust. Sfäär on niisuguste punktide hulk, milliste kaugus keskpunktist on võrdne raadiusega r. Tähistades sfääri meelevaldse punkti M koordinadid (x,y,z) ning avaldades võrduse |OM| =r koordinatide kaudu. Võrdust (x-a)² + (y-b) ² + (z-c)² = r² nim sfääri võrrandiks vaadeldavas koordinaatide süsteemis. Kui pinna võrrand on esitatav kujul F(x,y,z)=0, kus F(x,y,z) on n-astme polünoom, siis nim pinda n-järku algebraliseks pinnaks. Algebralistest pindadest lihtsaim on esimest järku pind ehk tasand. Sfäär on teist järku pind, sest selle võrrandis esinevad tundmatud on teisel astmel.Võrdust F(x,y)=0 nim joone L võrrandiks antud koordinaatide süsteemis tasandil, kui teda rahuld...

Matemaatika → Algebra ja analüütiline...
131 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

MTMM.00.340 Kõrgem matemaatika 1 2016 KÄRBITUD loengukonspekt Marek Kolk ii Sisukord 0 Tähistused. Reaalarvud 1 0.1 Tähistused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Kreeka tähestik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.3 Reaalarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksi...

Matemaatika → Kõrgem matemaatika
94 allalaadimist
thumbnail
55
pdf

Matemaatiline analüüs II loengukonspekt

MATEMAATLINE ANALÜÜS II 1. KORDSED INTEGRAALID Kordame kõigepealt mõningaid teemasid Matemaatlise analüüsi I osast. 1.1 Kahe muutuja funktsioonid Kui Tasndi R 2 mingi piirkonna D igale punktile x, y D seatakse ühesel viisil vastavusse arv z, siis öeldakse, et piirkonnas D on määratud kahe muutuja funktsioon z f x, y . Piirkoda D nimetataksefunktsiooni f määramispiirkonnaks. See on mingi piirkond xy-tasandil. Näide 1. Poolsfääri z 1 x2 y 2 määramispiirkonnaks on ring x 2 y2 1. Funktsiooni z ln x y määramispiirkonnaks on pooltasand y x (sirgest y x ülespoole jääv tasandi osa: vaata joonist). Kahe muutja funktsioon ise esitab pinda xyz-ruumis (ruumis R 3 ). Näide 2. Funktsiooni z x2 y 2 graafikuks on pöördparaboloid (vaata allpool olevat joonist) Kahe muutuja funktsiooni f nivoojoonteks nimetatakse jooni f x, y c Näide 3. Tüü...

Matemaatika → Matemaatiline analüüs ii
69 allalaadimist
thumbnail
816
pdf

Matemaatika - Õhtuõpik

Matemaatika õhtuõpik 1 2 Matemaatika õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline eesmärk + Jagamine samadel tingimustel 3.0 Eesti litsents (http://creativecommons.org/licenses/by-nc-sa/3.0/ee/). Autoriõigus: Juhan Aru, Kristjan Korjus, Elis Saar ja OÜ Hea Lugu, 2014 Viies, parandatud trükk Toimetaja: Hele Kiisel Illustratsioonid ja graafikud: Elis Saar Korrektor: Maris Makko Kujundaja: Janek Saareoja ISBN 978-9949-489-95-4 (trükis) ISBN 978-9949-489-96-1 (epub) Trükitud trükikojas Print Best 4 Sisukord osa 0 – SISSEJUHATUS . .................... 17 OSA 2 – arvud ..................................... 75 matemaatika meie ümber ................... 20 ...

Matemaatika → Matemaatika
200 allalaadimist
thumbnail
477
pdf

Maailmataju

UNIVISIOON Maailmataju Autor: Marek-Lars Kruusen Tallinn Detsember 2012 Esimese väljaande eelväljaanne. Kõik õigused kaitstud. 2 ,,Inimese enda olemasolu on suurim õnn, mida tuleb tajuda." Foto allikas: ,,Inimese füsioloogia", lk. 145, R. F. Schmidt ja G. Thews, Tartu 1997. 3 Maailmataju olemus, struktuur ja uurimismeetodid ,,Inimesel on olemas kõikvõimas tehnoloogia, mille abil on võimalik mõista ja luua kõike, mida ainult kujutlusvõime kannatab. See tehnoloogia pole midagi muud kui Tema enda mõistus." Maailmataju Maailmataju ( alternatiivne nimi on sellel ,,Univisioon", mis tuleb sõnadest ,,uni" ehk universum ( maailm ) ja ,,visi...

Muu → Karjäärinõustamine
36 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun