Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

"-joonintegraal-" - 25 õppematerjali

thumbnail
4
doc

Teist ja esimest liiki joonintegraal

Esimest liiki joonintegraal  1)  AB f ( x; y ) ds   f  (t ), (t )  ( ' (t )) 2  ( ' (t )) 2 dt b 2)  f ( x; y ) ds   f  x ( y ), y  1  ( x ' ( y ))2 dy AB a b 3)  AB f ( x; y )ds   f  x, y ( x )  a 1  ( y ' ( x )) 2 dx Näidis. Leida  x 2 AB ds , kus AB on funktsiooni y=ln x graafiku osa, A(1;0) ja B(e;1). 2...

Matemaatika → Matemaatiline analüüs 2
13 allalaadimist
thumbnail
4
doc

Matemaatiline analüüs

Muutuja vahetus kahekordses integraalis x = x(u; v) f ( x, y )dxdy 1)need on ühesed; 2)võrrandisüst. On üheselt avaldatav u ja v suhtes; 3)f-nid y = y(u; v) D peavad olema pidevad; 4)peavad olema pidevad osatuletised mõlema muutuja järgi. (joon) f ( x; y ) = f [ x (u; v ); y (u; v )] = F (u; v ) * f ( x; y ) dxdy = F (u; v) J dudv D xu xv J = Jacobi determinant e jakobiaan. yu yv Kahekordne integraal polaarkoordinaatides x = cos f ( x; y )dxdy = f ( cos; sin ) dd ...

Matemaatika → Matemaatiline analüüs
341 allalaadimist
thumbnail
12
docx

Matanalüüs II

1. Kahe muutuja funktsioon ja selle osatuletise rakendused: ekstreemumi leidmine, pinna puutuvtasapind ja normaal, näiteid Kahe muutuja funktsioon esitab pinda xyz-ruumis R3. Piirkonna D (x,y)ЄD igale punktile vastab z=f(x,y). Piirkond D on funktsiooni f määramispiirkond. Osatuletiste rakendused: Ekstreemumi (min, max) leidmine. Punkt, kus osatuletis on 0, nim. kriitiliseks punktiks. P(xo,yo). Puutujatasandi võrrand: fx(x0,y0)x+fy(x0,y0)y-z+d=0. Punkt Q0(x0,y0,z0) kuulub puutujatasandile.Seal pt.s puutujatasandiga risti olev vektor n on pinna normaal pt.s Q0. 2. Määratud integraal ja selle geomeetrilised rakendused: tasapinnalise kujundi pindala, joone kaare pikkus, pöördpinna ruumala ja pindala, näiteid Nimetatakse integraalsummade piirväärtuseks. Newton-Leibinzi valem lubab määratud integraale arvutada määramata integraalide abil. Integreerimise omadusi: 3+2 valemit Rakendused: 1) Tasap. kujundi S=int(ülem-alum) 2)...

Matemaatika → Matemaatiline analüüs ii
101 allalaadimist
thumbnail
20
docx

Matemaatiline analüüs II. Eksami kordamisküsimuste vastused

1. Kahje muutuja funktsioonid(definitsioon, määramis- ja muutumispiirkonna definitsioon ja tähistused, näited, esitusviisid, ilmutamata kujul esituse definitsioon, graafik ja graafiku näiteid)  DEF: Kahe muutuja funktsioon f on kujutus, mis seab igale arvupaarile (x,y) ∈ D vastavusse ühe reaalarvu z= f ( x , y )  Nende punktide (x,y) hulka D, mille puhul funktsiooni väärtus on lõplik, nimetatakse selle funktsiooni määramispiirkonnaks.  Funktsiooni väärtuste z hulka Z nimetatakse funktsiooni muutumispiirkonnaks.  Esitusviis : z=f (x , y ) z- sõltuv muutja, (x,y)- sõltumatud muutujad  Näide:  Funktsioon võib olla antud ilmutatud kujul z= f (x1 , x2 , x3 , … x n) (z=x2+y2-5) või ilmutamata kujul F ( x 1 , x 2 , ...

Matemaatika → Matemaatiline analüüs 2
165 allalaadimist
thumbnail
8
doc

Matemaatiline analüüs 2, kollokvium 3

Contents 1.Kordse integraali mõiste. Kahekordne intgeraal. Kahekordse integraali omadused...............1 2.Regulaarsed ja normaalsed piirkonnad. Kaksikintegraal. Kahekordse integraali arvutamine kaksikintegraali abi..................................................................................................................... 1 3.Muutujavahetus kordses integraalis. Jakobiaan. Polaarkoordinaadid.....................................2 4.Kolmekordne integraal ja selle arvutamine rist-, silinder- ja sfäärkoordinaatides..................3 5.Teist liiki joonintegraal ja Greeni valem.................................................................................4 6.Diferentsiaalvõrrandi mõiste...................................................................................................5 7.Cauchy ülesanne ehk algväärtusülesanne................................................................................ 5 8.Eksaktne diferentsiaal...

Matemaatika → Matemaatiline analüüs 2
536 allalaadimist
thumbnail
8
pdf

Matemaatiline analüüs - valmistumine Eksamiks

1. Kahe muutuja funktsioonid (definitsioon, määramis-ja muutumispiirkonna definitsioon ja tähistused, näited, esitusviisid, ilmutamata kujul esituse definitsioon, graafik ja graafiku näited). 2. Nivoojoone mõiste (definitsioon, näited ja omadused). 3. Kolme muutuja funktsioon (definitsioon, näited). 4. Osatuletised (definitsioon, tähistused). Tõlgendus – mida näitab osatuletis? Kuidas leida osatuletisi? 5. Ekstreemumid (lokaalse maksimumi ja miinimumi definitsioon). 6. Statsionaarne punkt (definitsioon). 7. Lokaalsete ekstreemumite leidmise algoritm. 8. Globaalsete ekstreemumite leidmise algoritm. Võrdlus lokaalsete ekstreemumite leidmisega. 9. Pinna puutujatasandi võrrand. Mis on lineariseerimine ja mis on selle idee? 10. Täisdiferentsiaali valem. Rakendusi (nt veahinnang). 11. Gradient (definitsioon, omadused ja tähistuse...

Matemaatika → Matemaatiline analüüs ii
37 allalaadimist
thumbnail
20
pdf

Matemaatilise analüüsi kollokvium nr.3

1.Kordse integraali mõiste. Kahemuutuja funktsiooni integraalsumma ja kahekordse integraali definitsioonid. Kahekordse integraali geomeetriline sisu. Kahekordse integraali omadused. Kui eksisteerib , mis ei sõltu osapiirkondadeks Dj jaotamise viisist ega punktide Pj ϵ Dj valikust, siis seda piirväärtust nimetatakse funktsiooni f(x,y) kahekordseks integraaliks üle piirkonna D ja tähistatakse Olgu D kinnine tõkestatud piirkond ruumis R2. Olgu z = ƒ (x,y) piirkonnas D määratud pidev funktsioon. Jaotame piirkonna D n tükiks ∆S1,∆S2,…,∆Sn.Tähistagu ∆Si samaaegselt nii i- ndat tükki kui ka i-nda tüki pindala.Valime igalt tükilt ühe punkti P ja moodustame järgmise summa: Vn= ƒ (P1) ∆S1 + ƒ (P2) ∆S2+…+ ƒ (Pn) ∆Sn Seda summat Vn nim funktsiooni ƒ integraalsummaks piirkonnas D Kahekordse integraali geomeetriline sisu :  Olgu ƒ(x,y)≥0. Vaatleme keha Q, mis on ülalt piiratud pinnaga z = (x,y) alt ...

Matemaatika → Matemaatiline analüüs 2
98 allalaadimist
thumbnail
55
pdf

Matemaatiline analüüs II loengukonspekt

MATEMAATLINE ANALÜÜS II 1. KORDSED INTEGRAALID Kordame kõigepealt mõningaid teemasid Matemaatlise analüüsi I osast. 1.1 Kahe muutuja funktsioonid Kui Tasndi R 2 mingi piirkonna D igale punktile x, y D seatakse ühesel viisil vastavusse arv z, siis öeldakse, et piirkonnas D on määratud kahe muutuja funktsioon z f x, y . Piirkoda D nimetataksefunktsiooni f määramispiirkonnaks. See on mingi piirkond xy-tasandil. Näide 1. Poolsfääri z 1 x2 y 2 määramispiirkonnaks on ring x 2 y2 1. Funktsiooni z ln x y määramispiirkonnaks on pooltasand y x (sirgest y x ülespoole jääv tasandi osa: vaata joonist). Kahe muutja funktsioon ise esitab pinda xyz-ruumis (ruumis R 3 ). Näide 2. Funktsiooni z x2 y 2 graafikuks on pöördparaboloid (vaata allpool olevat joonist) Kahe muutuja funktsiooni f nivoojoonteks nimetatakse jooni f x, y c Näide 3. Tüü...

Matemaatika → Matemaatiline analüüs ii
69 allalaadimist
thumbnail
9
docx

Matemaatiline analüüs II KT teooria

1. Kahekordne integraal: põhjalik selgitus (vastava piirkonna jaotus, integraalsumma definitsioon jne). Vaatleme xy-tasandil joonega L piiratud kinnist piirkonda D. Olgu antud pidev funktsioon z=f(x,y). Jaotame piirkonna D mingite joontega n osaks: s1, s2, s3,..., sn, mida nim. osapiirkondadeks. Uute sümbolite kasutuselevõtmise vältimiseks mõistame s1,... ,sn all mitte ainult vastavaid osapiirkondi, vaid ka nende pindasid. Võtame igas osapiirkonnas s1 (selle sees või rajajoonel) mingi punkti P1, saades nii n punkti: P1, P2, P3,..., Pn. Tähistame antud funktsiooni z=f(x,y) väärtusi valitud punktides sümbolitega f(P 1),...,f(Pn) ja moodustame korrutiste summa, mille liikmeteks on f(P1)s1: Summat nim. funktsiooni z=f(x,y) integraalsummaks üle piirkonna D. Kui piirkonna D igas punktis...

Matemaatika → Matemaatiline analüüs 2
211 allalaadimist
thumbnail
13
docx

Laineväljad ja antennid

IRM0110 Laineväljad ja antennid EKSAMIKÜSIMUSTE TEEMAD 2016 I LAINEVÄLJAD 1. ELEKTROMAGNETILINE VÄLI JA KESKKONA PARAMEETRID 1. Elektri- ja magnetvälja parameetrid ja omadused. IRM0110_03_mgvali.pdf LOENGUSLAIDIDE LÕPUS TABEL!!! IRM0110_02_elvali Elektrivälja tugevus: Laengud mõjustavad üksteist elektrivälja vahendusel. Igasugune laeng muudab teda ümbritseva ruumi omadusi: tekitab seal elektrivälja. Süsteemi kahest laengust võib vaadelda ka ekvivalentsel kujul kui laengut q1, mis asub laengu q2 poolt tekitatud elektriväljas. Elektrivälja tugevus on jõud, mis mõjutab üht laenguühikut elektriväljas. Vektori E suund ühtib positiivsele laengule mõjuva jõu suunaga. Joon.2-2. Punktlaengu elektrivälja tugevus E. kus F [N] on elektriline jõud, mis mõjutab üht laenguühikut elektriväljas piki laenguid ühendatavat joont, q1 ...

Füüsika → Elektromagnetvõnkumine
1 allalaadimist
thumbnail
10
doc

Matemaatiline analüüs II

1. Kahemuutuja funktsiooni integraalsumma mõiste ja geomeetriline sisu. · Olgu D kinnine tõkestatud piirkond ruumis R2. Olgu z = (x,y) piirkonnas D määratud pidev funktsioon. Jaotame piirkonna D n tükiks S1,S2,...,Sn.Tähistagu Si samaaegselt nii i-ndat tükki kui ka i-nda tüki pindala.Valime igalt tükilt ühe punkti P ja moodustame järgmise summa: Vn= (P1) S1 + (P2) S2+...+ (Pn) Sn Seda summat Vn nim funktsiooni integraalsummaks piirkonnas D · Olgu (x,y) 0. siis saab integraalsummas olevat korrutist (P i) Si tõlgendada kui silindri ruumala, mille põhi on S i ja kõrgus (Pi) Selline silinder tähistatakse Zi-ga. IntegraalsummaVn on järelikult silindrite ühendi Z=Z1 U Z2 U...U Zn ruumala. Silindrite ühend Z on treppkeha, mille ülemine pind on tükiti tasapinnalineomades hüppeid erinevate kõrgustega naaber silindrite liitekohtades. 2. Kahek...

Matemaatika → Matemaatiline analüüs
523 allalaadimist
thumbnail
2
doc

Keha liikumisvõrrand

Keha liikumisvõrrand r(t)=x(t)i+y(t)+z(t)k, kus x(t), y(t), z(t) on kolm sõltumatut funktsiooni. Teist järku diferentsiaalvõrrand (Newtoni II) r=a= d²r/dt² = 1/m *F Ruutpolünoomi r(t) = r0+v0+ a/2 *t² -ühtlaselt muutuva liikumise valemit, kus r0 algasend, v0 algkiirus, a kiirendus Keha pöörlemisvõrrand (t)=0 + 0 *t + /2 *t² - ühikud on radiaan Newtoni II seadus (kiirendus- ja impulssesitus) r=a= 1/m *F Impilss ehk liikumishulk p= mv Kulgliikumise diferentsiaalvõrrand a=1/m *F r= d²r/dt²=1/m *F Kulg diferentsvõrr lahendamine jõu puudumisel ning konstantse jõu korral (tuletusega) a) kui jõud on null, x=0 d/dt (dx/dt)=0 dx/dt=v0x=const, dx=voxdt voxdt=voxt+x0 , kus vox ja x0 on koordinadi väärtusega ajahetkel t=0. b) kui j]ud on konstantne (raskujõud: F=mg, hõõrdejõud: F=P), on võrrandi lahendiks polünoom x= x0 + vox*t + ax/2 *t²; ax=1/m *Fx Töö: skalaarkorrutis ja joonintegraal A=Fs=Fscos((Fs)), kus s=r=r2-r1 ning ((Fs)) tähistab vekt...

Matemaatika → Algebra ja analüütiline...
33 allalaadimist
thumbnail
14
pdf

Matemaatiline analüüs II

Mitmemõõtmelise ruumi mõiste Def: On antud n reaalarvu x1...xn ja nende järjestatud jada (x1...xn)(-punkt) ­ seda nim n- mõõtmelise ruumi punktiks. Rn={(x1,...,xn) | xi R, i=1,...,n}, P(x1,...,xn) ­ punkt koordinaatidega xi n=1: R1={P(x1) | x1 R} geom. sirge n=2: R2={P(x1,x2) | x1,x2 R} geom. tasand n=3: R3={P(x1,x2,x3) | x1,x2,x3 R} geom. ruum Punkt A on piirkonna D sisepunkt, sel korral kui tal leidub ümbrus, mis sisaldub piirkonnas D. Punkt A on piirkonna D rajapunkt sel korral kui iga tema ümbrus sisaldab nii piirkonna D kui ka piirkonda mittekuuluvaid punkte. Piirkond D on lahtine, kui ta koosneb sisepunktidest. Piirkond D on kinnine, kui ta koosneb nii sise- kui ka rajapunktidest. Mitme muutuja funktsiooni mõiste Def: nMF f:RnR:P(x1,...,xn) Rn a w=f(P) f(x1,...,xn) R Kujutlus, mis seab n-mõõtmelise ruumi punktidele P vastavusse lõpliku reaalarvu w=f(P), nim n- muutuja funktsiooniks. Geom ­ hüperpind n+1-mõõtmelises ruumis. ...

Matemaatika → Matemaatiline analüüs 2
336 allalaadimist
thumbnail
10
docx

Füüsika I kordamisküsimused

I kontrolltöö kordamisküsimused (YFR 0011) 1. Kuidas leida kahe vektori liitmisel tekkiva vektori pikkust kui on teada liidetavate vektorite pikkused. Liidetavad vektorid on o a) samasuunalised; liitmine nt a(2;3;4) + b(2;4;1) = c(4;7;5) o b) vastassuunalised; sama o c) üksteisega risti. 2. Kuidas peavad olema vektorid suunatud, et nende o a) skalaarkorrutis oleks 0; risti o b) vektorkorrutis oleks 0? Samas suunas/ vastassuunas 3. Mis on kohavektor? Mis on nihkevektor? Kuidas nad on omavahel seotud? Kohavektor on vektor, mis on tõmmatud koordinaadi alguspunktist etteantud punkti. Nihkevektor on vektor, mis on tõmmatud liikumise alguspunktist liikumise lõpp-punkti. Nihkevektor on kohavektorite muut, nihkevektor tähistab kohavektori juurdekasvu ajavahemikus delta-t 4. Mis on nihkevektor? Mis on trajektoor? Millal ühtib keha trajektoor nihkevektoriga? Nihkevektor on ...

Füüsika → Füüsika
84 allalaadimist
thumbnail
5
doc

Matemaatilise analüüsi 2.kollokviumi

Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon. Suurust df:=fx(x,y)dx + fy(x,y)dy, kus dx:= x...

Matemaatika → Matemaatiline analüüs 2
37 allalaadimist
thumbnail
8
doc

Hüdrogaasimehaanika kordamisküsimused eksamiks vastustega

Hüdrogaasimehaanika Kordamisküsimused eksamiks 1. Mida uurib hüdromehaanika? Hüdromehaanika on teadus, mis käsitleb vedeliku tasakaalu ja liikumise seaduspärasusi ning vedelikku asetatud jäiga keha välispinnale mõjuvaid jõude. 2. Mida uurib hüdrostaatika? Hüdrostaatika on hüdromehaanika haru mis uurib tasakaalus olevat vedelikku. 3. Mida uurib hüdrodünaamika? Hüdrodünaamika on hüdromehaanika haru, mis uurib vedelike liikumist neile mõjuvate jõudude toimel (sealhulgas ka mitmesuguseid lainetusnähtusi) ning liikuvasse vedelikku asetatud keha välispinnale mõjuvaid jõude. 4. Mida uurib hüdraulika, tema mõiste, aine ja uurimisobjekt. Hüdraulika on hüdromehaanika rakendusharu, mis käsitleb vedeliku tasakaalu (hüdrostaatika) ja liikumise (hüdrodünaamika) seaduspärasusi. 5. Loetleda vedelike omadusi. Tihedus, erikaal, kokkusurutavus, soojuspaisum...

Mehaanika → Hüdrogaasimehaanika
176 allalaadimist
thumbnail
4
doc

Spikker

f ( P)dS = f ( A) dS 1. Kahemuutuja funktsiooni integraalsumma mõiste ja f * (P)dS = f * (P)dS + f * (P)dS = f (P)dS m d geomeetriline sisu Vn = f ( P)dS = lim Vn = lim f ( pi , y)dy xi + lim = Kahemõõtmelises hulgas DR2 määratud funktsiooni f(x,y) integraalsummaks antud piirkonnas D nimetatakse summat D D 4. Kahekordse in...

Matemaatika → Matemaatiline analüüs
230 allalaadimist
thumbnail
32
pdf

Matemaatiline analüüs II konspekt - MITME MUUTUJA FUNKTSIOONID

Kordamine eksamiks aines matemaatiline analüüs II (2004/2005 õa kevad) §1. MITME MUUTUJA FUNKTSIOONID 1. Ruum R m , hulgad selles ruumis Def. Kõigi m reaalarvust koosnevate järjestatud süsteemide P = ( x1 ,..., x m ) hulka nimetatakse m-mõõtmeliseks ruumiks. Def. Kui m-mõõtmelises ruumis defineeritakse süsteemide P = ( x1 ,..., x m ) ja Q = ( y1 ,..., y m ) m vaheline kaugus d (P, Q ) valemiga d (P, Q ) = (x - y i ) , siis nimetatakse seda ruumi 2 i i =1 m-mõõtmeliseks eukleidiliseks ruumiks ja tähistatakse R m . Süsteemi P = ( x1 ,..., x m ) nimetatakse ruumi R m punktiks ning reaalarve xi (1...

Matemaatika → Matemaatiline analüüs ii
187 allalaadimist
thumbnail
16
doc

Kordamisküsimused - vastused

MATEMAATILINE ANALÜÜS II Kood YMM0012 3,5 AP KORDAMISKÜSIMUSED 1. Mitme muutujaga funktsiooni mõiste m-muutuja funktsiooniks nimetatakse kujutist, mis seab suuruse P igale väärtusele tema muutumispiirkonnast D vastavusse suuruse z ühe kindla väärtuse Mitmemuutuja funktsioon graafik Funktsiooni z=f(x1,x2,...,xm), määramispiirkonnaga D, graafikuks nimetatakse järgmist ruumi Rm+1 alamhulka ={(x1,x2,...,xm,f(x1,x2,...,xm))||P(x1,x2,...,xm)D} 2. Nivoojooned ja pinnad Kahemuutuja funktsiooni z=f(x,y) nivoojooneks nimetatakse joont, mille moodustavad piirkonna D punktid (x,y) mille korral f(x,y)=C, kus C on etteantud konstant Skalaarvälja f ehk funktsiooni f nivoopinnaks nimetatakse pinda, mis koosneb piirkonna D punktidest (x,y,z) mille korral f(x,y,z)=C, kus C on etteantud konstant. 3. Mitme muutuja funktsiooni piirväärtus ja pidevus Mitmemuutuja funktsiooni piirväärtus m-muutuja funktsioonil f on piirväärtus b punktis A kui suvalises...

Matemaatika → Matemaatiline analüüs 2
511 allalaadimist
thumbnail
14
docx

Diferentsiaalvõrrandite eksami konspekt

1. Diferentsiaalvõrrandi üld- ja erilahend. Väärtus ja raja ülesanne Def 1.1 Võrrandit, milles osalevad sõltumatu muutuja, tundmatu funktsioon ja selle tuletised nim diferentsiaalvõrrandiks. (1.1) F(x, y(), y'(), ...)=0 Kui otsitav funktsioon y sõltub ainult ühest muutujast, siis seda nim harilikuks diferentsiaalvõrrandiks. Kui otsitav funktsioon sõltub mitmest muutujast, siis on tegemist osatuletistega diferentsiaalvõrranditega. Kõrgema järguga tuletis dif.võr määrab ära selle võrrandi järgu. Esimest järku dif võrrand on (1.2) Def 1.2 N-järku dif.võr (1.1) üldlahendiks nim n-parameetrilist lähtuvat funktsioonide parve või peret, mis muudab võrrandi samasuseks sõltumata parameetrite väärtustest. (1.3) Dif.võr lahendamist nim selle võrrandi integreerimiseks ja selle lahendid integraaliks, lahendi graafikut nim integraaljooneks. Kui n-järku võrrandile lisada n-algtingimust: (1.4) Siis saame algväärtuseks ülesande (1.1). esimest järku...

Matemaatika → Dif.võrrandid
419 allalaadimist
thumbnail
8
pdf

Matemaatiline analüüs II 2. kollokviumi spikker

1. Mitmemuutuja funktsiooni lokaalsete ekstreemumite mõisted. Statsionaarne punkt. Kriitiline punkt. piirkonna D rajajoon. Eeldame, et piirkonnas D on täidetud tingimus f(x,y)>=g(x,y). Kahekordse integraali 𝑥 = 𝜌 𝑐𝑜𝑠𝜑 Mitmemuutuja funktsiooni lokaalse ekstreemumi tarvilik tingimus. Definitsioon 1. Öeldakse, et kahe omaduse tõttu ∬𝐷[𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦)]𝑑𝑥𝑑𝑦 = ∬𝐷 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 − ∬𝐷 𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦. Mõlemad kahekordsed 𝑦 = 𝜌 𝑠𝑖𝑛𝜑 muutuja funktsioonil on punktis P1(x1, y1) lokaalne maksimum, kui sellel punktil leidub niisugune ümbrus teisendus on kujul 𝑧=𝑧 .Tavaliselt € [0, +lõpmatus) φ € [0, 2π). ∭Ω 𝑓(𝑥, ...

Matemaatika → Matemaatiline analüüs 2
68 allalaadimist
thumbnail
273
pdf

Lembit Pallase materjalid

YMM3731 Matemaatiline analu¨u¨s I 2007/08 ~o.-a. su¨gissemestril 3,5 AP 4 2-0-2 E S Dots. Lembit Pallas TTU¨ Matemaatikainstituut V-404, tel. 6203056 e-post: [email protected] K¨asitletavad teemad on toodud punktide kaupa. Neid punkte tuleb vaadelda ka kui kollokviumide ja eksami teooriak¨ usimusi. 1. Funktsiooni m~oiste ja esitusviisid 2. Funktsioonide liigitamine (paaris- ja paaritud funktsioonid, perioodilised funktsioo- nid, kasvavad ja kahanevad funktsioonid) 3. P¨o¨ordfunktsioon 4. Liitfunktsioon 5. Jada piirv¨aa¨rtus 6. Funktsiooni piirv¨aa¨rtus ¨ 7. Uhepoolsed piirv¨aa¨rtused 8. L~opmatult kasvavad ja l~opmatult kahanevad suurused 9. Piirv¨a¨artusteoreemid 10. L~opmatult kahanevate suuruste v~ordlemine 11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfu...

Matemaatika → Matemaatiline analüüs
808 allalaadimist
thumbnail
34
doc

Füüsika eksam inseneri erialadele

Füüsika I osa eksami kordamisküsimused TEST........................................................................................................................................... 1 DEFINITSIOONID...................................................................................................................13 VALEMID (SEADUSED)........................................................................................................20 TEST Loeng 1 · Arvutüübid: naturaalarv, täisarv, ratsionaalarv, reaalarv, kompleksarv. naturaalarv ­ loendamiseks kasutatavad arvud 0, 1, 2, 3, ... (mõnikord jäetakse 0 naturaalarvude hulgast välja); täisarv ­ kõik naturaalarvud ja nende negatiivsed vastandarvud; ratsionaalarv ­ need reaalarvud, mida saab esitada kahe täisarvu m ja n (n0) m/n. Igal ratsionaalarvul on lõpmatu kümnendarendus ja se...

Füüsika → Füüsika
381 allalaadimist
thumbnail
1080
pdf

Matemaatiline analüüs terve konspekt

YMM3731 Matemaatilne analu¨ us ¨ I Gert Tamberg Matemaatikainstituut Tallinna Tehnikaulikool ¨ [email protected] http://www.ttu.ee/gert-tamberg ¨ G. Tamberg (TTU) YMM3731 Matemaatilne analu¨ us ¨ I 1 / 25 ~ Oppeaine sisu ~ Oppeaine jaotub kahte ossa: 1 Diferentsiaalarvutus (loengud 1-9) 2 Integraalarvutus (loengud 10-16) ~ Oppeaine ~ lopphinne pannakse valja¨ viiepallisusteemis. ¨ Tudengil on ~ voimalik saada oma hinne katte ¨ semestri jooksul sooritatud kontrollto¨ ode ¨ ~ pohjal. Selleks tuleb kirjutada...

Matemaatika → Matemaatiline analüüs 1
136 allalaadimist
thumbnail
414
pdf

TTÜ üldfüüsika konspekt

1. Punktmassi kinemaatika. 1.1 Kulgliikumine 1.2 Vaba langemine 1.3 Kõverjooneline liikumine 1.4a Horisontaalselt visatud keha liikumine 1.4b Kaldu horisondiga visatud keha liikumine. 2. Pöördliikumine 2.1 Ühtlase pöördliikumisega seotud mõisted 2.2 Kiirendus ühtlasel pöördliikumisel 2.3 Mitteühtlane pöördliikumine. Nurkkiirendus 2.4 Pöördenurga, nurkkiiruse ja nurkkiirenduse vektorid. 3. Punktmassi dünaamika 3.1. Inerts. Newtoni I seadus. Mass. Tihedus. 3.2 Jõu mõiste. Newtoni II ja III seadus 3.3 Inertsijõud 4. Jõudude liigid 4.1 Gravitatsioonijõud 4.1a Esimene kosmiline kiirus. 4.2 Hõõrdejõud 4.2a Keha kaldpinnal püsimise tingimus. 4.2b Liikumine kurvidel 4.3 Elastsusjõud 4.3a Keha kaal 5 JÄÄVUSSEADUSED 5.1 Impulss 5.1a Impulsi jäävuse seadus. 5.1b Masskeskme liikumise teoreem 5.1c Reaktiivliikumine (iseseisvalt) 5.2 Töö, võimsus, kasutegur 5.3 Energia, selle liig...

Füüsika → Füüsika
177 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun