Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

"-boltzmanni-konstant" - 113 õppematerjali

thumbnail
8
ppt

Ludwig Boltzmann

Ludwig Boltzmann (1844 ­1906) Lapsepõlv · Boltzmann sündis 1884. aastal Austria-Ungari keisririigi pealinnas Viinis. · Boltzmanni isa Ludwig Georg oli Viinis maksuametnik. · Boltzmann sai oma alghariduse koduõpetajalt. · Pärast koduõpet läks Boltzmann Linz'i keskkooli Ülem-Austrias. · Boltzmanni oli 15, kui ta isa suri. Austria-Ungari keisririik Hariduse lõpp ja karjääri algus · Boltzmann alustas 1863. aastal Viini Ülikoolis füüsika õpinguid. Ülikoolis tutvus ta lähemalt Maxwelli töödega. · 1869. aastal sai Boltzmann Graz'i ülikooli Matemaatilise füüsika professoriks . · 1873. aastal kutsuti Boltzmann Viini Ülikooli professoriks, kus ta õpetas kuni 1876. Boltzmann ülikooli aastatel. Perekond · 1872. aastal kohtas Boltzmann Henriette von Aigentler'i, kellesse ta armus. 1876. ...

Füüsika → Füüsika
3 allalaadimist
thumbnail
10
pdf

Füüsika tähistused

ALATI JA IGAL POOL: i - x-telje suunaline ühikvektor j - y-telje suunaline ühikvektor k - z-telje suunaline ühikvektor Sirgliikumine x ­ asukoha koordinaat v ­ kiirus (märgiga suurus) vav ­ keskmine kiirus a ­ kiirendus (märgiga suurus) aav ­ keskmine kiirendus x0 ­ liikumise alguspunkt v0 ­ algkiirus Liikumine ruumis r ­ punkti kohavektor r ­ nihkevektor v ­ kiiruse suurus s ­ tee pikkus t ­ aeg v ­ kiirusvektor vav ­ keskmine kiirus vektorina a ­ kiirendusvektor a k ­ keskmine kiirendus vektorina at ­ kiirenduse tangentsiaalkomponent at ­ kiirenduse tangentsiaalkomponendi suurus a n ­ kiirenduse normaalkomponent an ­ kiirenduse normaalkomponendi suurus R ­ kõverusraadius Ühtlane ringliikumine r ­ ringjoone raadius 0 ­ algfaas (algnurk) ­ pöördenurk t ­ ajavahemik ­ nurkkiirus s ­ kaare pikkus (tee pikkus) v ­ (joon)kiiruse suurus t ­ ajavahemik juhul, kui ...

Füüsika → Füüsika
45 allalaadimist
thumbnail
2
rtf

Soojusõpetus

* peamised makroskoopilised parameetrid-ruumala, rõhk, temperatuur-suurusi saab mõõta *makroskoopilisi suurusi, mis üheselt iseloomustavad gaasi olekut, nim gaasi termodünaamiliseks parameetriks-kui vaadelda selle puhul mingi gaasi massi, siis V,p,T=const. *termodünaam. tasakaal- olek, mille puhul term.dünaam. parameetrid enam ei muutu, vt temp teemat *temperatuur-iseloomustab makrokeha kui süsteemi soojuslikku olekut ehk soojusastet.Termodünaamilise tasakaalu puhul on süsteemi kõigi osade temperatuur ühesugune. Temperatuuride erinevuse korral siirdub soojus kõrgema temperatuuriga osadelt madalama temperatuuriga osadele, kuni temperatuuride ühtlustumiseni. *Termodünaamiliseks süsteemiks nimetatakse reaalse või kujuteldava piirpinnaga piiritletud füüsikalist keha või kehade süsteemi, mis on termodünaamilise käsitluse aineks(elusorganism, planeet). Termodünaamilisi süsteeme on võimalik liigitada vastavalt sellele, millises vastastikmõjus ...

Füüsika → Füüsika
36 allalaadimist
thumbnail
2
docx

Soojuskiirguse olemus

Soojuskiirguse olemus (mis liiki kiirgus). Soojuskiirgus kujutab endast infrapuna kiirgust. Soojuskiirgusega seotud suurused (integraalne ja diferentsiaalne kiirgusvõime, neeldumisvõime), nende mõõtühikute nimetused SI-s. 1. Integraalne kiirgusvõime ehk energeetiline valgsus ehk võime kiirata energiat. R = E/S*t = 1J/m^2*s = 1W/m^2 - R-integraalne kiirgusvõime, E-keha poolt kiiratav koguenergia, S-kiirgava keha pindala, t-kiirgamise aeg. 2. Diferentsiaalne kiirgusvõime näitab keha pinna ühikult ajalise ühiku jooksul ühikulises lainepikkuste vahemikus kiiratud energiat nullile lähenevas lainepikkuste vahemikus. r = E/S*t* = 1J/m^2*s*m - r-diferentsiaalne kiirgusvõime, E-keha poolt kiiratav koguenergia, S-kiirgava keha pindala, t-kiirgamise aeg, -lainepikkuste vahemik. 3. Neeldumisvõime. a = E/E0 - E-keha pinnal neeldunud energia, E0-keha pinnale langenud energia. Absoluu...

Füüsika → Füüsika
29 allalaadimist
thumbnail
9
doc

Musta keha kiirgus

Sisukord 1. Must keha üldmõistena.................................................lk 1-3 2. Absoluutselt must keha.................................................lk 4-5 3. Absoluutselt musta keha mudel.......................................lk 6 4. Musta keha kiirgus......................................................lk 7-8 Kasutatud materjalid: ENE, Internet> neti.ee Mõiste must keha tähistab läbipaistmatut objekti, mis eraldab soojuskiirgust. Ideaalne must keha neelab kogu saabuva valguse ega peegelda seda. Toatemperatuuril oleks selline objekt ideaalselt must (siit ka mõiste must keha). Kuid kõrgemal temperatuuril hakkab ka must keha eraldama soojuskiirgust. Õigupoolest eraldavad kõik objektid soojuskiirgust, kui nende temperatuur on suurem kui absoluutne null ehk -273,15 kraadi Celsiuse järgi, kuid ükski objekt ei kiirga soojust ideaalselt, vaid võtab vastu ja eraldab mõningaid valguse lai...

Füüsika → Füüsika
51 allalaadimist
thumbnail
2
docx

Boltzmanni superpositsiooni printsiip

Boltzmanni superpositsiooni printsiip Superpositsiooni printsiip on kõikides lineaarsetes süsteemides kehtiv printsiip, mille järgi süsteemi reaktsioon mitmele mõjurile on sama, mis üksikute mõjurite poolt tekitatud reaktsioonide summa. On kaks superpositsiooni pritsiipi, mis on olulised plastmaterjalide käitumise prognoosimisel einevate katsetingimuste korral. Üheks on ,,Aja Temperatuuri Superpositsiooni Pristsiip" või WLF võrrand. See kirjeldab ekvivalentsuse muutusi sõltuvalt ajast ja temperatuurist. Teiseks on Boltzmanni printsiip, mis kirjeldab materjali reageeringut erinevate koormuste, pingete ajaloost. Ludwig Boltzmann oli kuulus Austria füüsik, kes sai kuulsaks oma panuse andmisega statistilise mehaanika ja statistilise termodünaamika valdkonda. Tema nime kannab ka füüsikas tuntud Boltzmanni konstant. Viskoelastsetel materjalidel avalduvad viskoossed ja elastsed omadused erineval moel, sest viskoe...

Materjaliteadus → Polümeeride tehnoloogia
17 allalaadimist
thumbnail
6
doc

Füüsika tabelid põhikoolile

Füüsika tabelid 1. Olulisenad füüsikakanstandid Valguse kiirus vaakumis Gravitatsioonikonstant Avogadro arv Boltzmanni konstant Universaalne gaasikonstant Elementaarlaeng Elektroni seisumass Prootoni seisumass Neutroni seisumass Elektriline konstant Magnetiline konstant Plancki konstant 2. Kütteväärtused Bensiin Petrooleum Diislikütus Piiritus (etanool) Kuiv kasepuit Püssirohi Kivisüsi Turvas Nafta Vesinik 1 3. Aine agregaatoleku muutumine Aine Sulamis- Sulamissoojus Keemis- Auramissoojus temperatuur temperatuur keemis- (°C) normaalrõhul ...

Füüsika → Füüsika
9 allalaadimist
thumbnail
5
doc

Kiired ja spektrid

Soojuskiirguseks nimetatakse sellist kiirgust, mida keha emiteerib ainuüksi soojusenergia arvel. See on ka üks soojusülekande vormidest (lisaks soojusjuhtivusele ja konvektsioonile). soojuskiirguse intensiivsus ja spekter keha temperatuurist. Madalatel temperatuuridel (mõnisada kraadi) on hõõgumine vaevumärgatav ja on punaka tooniga. Temperatuuri tõstmisel soojuskiirguse intensiivsus kasvab ja kiirgav keha omandab alguses kollaka (hõõglamp, 3000°), seejärel valge (Päike, 6000°) ja lõpuks sinaka tooni (alates ca 8000°). Küll aga järeldub üldistest termodünaamilistest kaalutlustest, et iga keha peab alluma Kirchhoffi seadusele: termilise tasakaalu tingimustes on keha kiirgamisvõime ja neelamisvõime võrdsed (igal lainepikkusel). Absoluutselt musta keha kiirgamis- ja neelamisvõime on mõlemad võrdsed ühega. Elektroluminestsents- hõrendatud gaasi helendamine teda läbiva elektrivoolu toimel. Nähtust kasutatakse reklaamvalgustuses. Elektrolumi...

Füüsika → Füüsika
81 allalaadimist
thumbnail
1
docx

Avogadro arv

Anna Pertel 134823YASB Avogadro arv Avogadro arv (tähis: Na) on aineosakeste (aatomite, molekulide või ioonide) arv 1-moolises ainehulgas. Avogadro arv ise defineeritakse aatomite arvuna 12 grammis süsiniku isotoobis 12C. Süsinik-12 on aluseks võetud sellepärast, et selle aatommassi on saadud mõõta täpsemalt kui ühegi teise elemndi massi. Avogadro arvu täpset väärtust ei ole tänapäeva tehnoloogiaga võim...

Füüsika → Materjali füüsika ja keemia
2 allalaadimist
thumbnail
3
pdf

Soojusliikumine

SOOJUSLIIKUMINE Molekulide arvu ühes moolis aines annab Avogadro arv N A = 6.02 10 23 mool-1. Mool on ainehulk, milles sisalduvate struktuurielementide arv võrdub 0.012 kg nukliidi 12C aatomite arvuga. Sellise hulga osakeste liikumist saab kirjeldada vaid statistiliselt. Saab anda tõenäosuse, et hetkel t on osakese asukoht punktis P, ja tõenäosuse, et samal hetkel on tema kiirus v . Enamasti pole molekulide paiknemine mingil hetkel oluline. Erandiks on vast juhud, kui meil on vaja arvutada ühe aine difusiooni teise sisse. Küll aga on oluline teada molekulide jaotust kiiruste järgi, sest molekulide liikumise kiirus on otseselt seotud keha temperatuuriga. Soojusliikumine toimub aine eri faasides erinevalt. Ideaalne gaas: · molekule on palju ja nad on ühesugused · molekuli mõõtmed on väga palju väiksemad molekulidevahelisest keskmisest kaugusest · molekulid on pidevas liikumises · mol...

Matemaatika → Matemaatika
21 allalaadimist
thumbnail
4
doc

Gaas, energia

Füüsika KT 1. Molekulaarkineerilise teooria lähtekohad.  gaas koosneb molekulidest  molekulid on pidevas korrapäratus liikumises  molekulide vahel on vastastikmõju 2. Mis on aine makro- ja mikrokäsitlus?  Makrokäsitluseks nimetatakse sellist käsitlust, kus füüsikalised suurused iseloomustavad keha  Mikrokäsitluseks nimetatakse sellist käsitlust, kus lähtutakse aine molekulaarsest ehitusest 3. Millised on olekuparameetrid?  Suurused, mis iseloomustab termodünaamilise süsteemi olekut 4. Loetle makro- ja mikroskoopilisi parameetreid  Makro – mass(m) ; ruumala(V) ; rõhk(p) ; temperatuur(T)  Mikro – konstentratsioon(n) 5. Mis iseloomustab ideaalset gaasi?  molekulid on punktmassid  molekulide põrket anuma seintega on absoluutselt elastsed  molekulide vahel ei ole vastastikmõju 6. Mida kujutab endast gaasi rõhk?  Molekulide põrked vastu anum...

Füüsika → Füüsika
7 allalaadimist
thumbnail
1
doc

Molekulaarfüüsika

Molekulaarfüüsikas nim. molekuliks aineosakest, mis osaleb molekuaarliikumises ehk soojusliikumises. Gaaside molekulaarkineetilises teoorias lähtutakse: gaas koosneb molekulidest, molekulid on pidevas kaootilises liikumises,molekulide vahel on vastastikmõjud. Palju seoseid võib leida ilma molekulidele mõtlemata kasutades füüsikalisi suurusi,mis iseloomustavad keha tervikuna, sellist käsitlust nim. makroskoopiliseks ehk makrokäsitluseks. Füüsikalisi suurusi,mille abil ainet makroskoopiliselt kirjeldatakse nim. makroparameetriks. Gaasi koguse oleku määravad rõhk,ruumala ja temp. ning neid nim. olekuparameetriteks. Sageli ei piisa makrokäsitlusest ja peab lähtuma aine molekulaarsest ehitusest,sellist käsitlust nim. mikroskoopiliseks ehk mikrokäsitluseks. Vastavaid füüsikalisi suuruseid nim. seljuhul mikroparameetriteks. Ideaalse gaasi molekul: molekulid on punktmassid(nende ruumala on kaduv,väike),molekulide põrked anuma seintega...

Füüsika → Füüsika
110 allalaadimist
thumbnail
1
doc

Füüsika soojusnähtused,

1. Gaasi siseenergia. Millest on tingitud gaasi siseenergia? Millest sõltub lihtsamal juhul siseenergia? - 1. molekulide kaootilise liikumise kineetiline energia. 2. molekulide vastasmõju energia. 3. molekulisisene energia. 4. temperatuurist 2. Mille põhjal saame väliselt hinnata sisenergia suurust? Temperatuuri põhjal 3. Mida iseloomustab tavaelus temperatuur, keha soojendatust (selle taset) millega mõõdetakse temperatuuri, termomeetriga. millised on levinumad temperatuuriskaalad? (kokkuleppelised) : Celsius ºC ja Fahrenheit ºF 4. Mida nim. soojuslikuks tasakaaluks? Soojuslik tasakaal on olek, kus kõik oleku parameetrid (ruumala, rõhk, temperatuur) püsivad kaua muutumatutena 5. Iseloomusta Celsiuse temperatuuriskaalat? Celsiuse temperatuuri skaalaga mõõdetav temperatuur iseloomustab lihtsalt aine soojendatust. 100º C ­ vesi keeb, 0º C vesi sulab 36,6º C ­ keha normaal temperatuur 6. Iseloomusta Fahrenheiti temperatu...

Füüsika → Füüsika
17 allalaadimist
thumbnail
2
pdf

KONSTANTE ja ARVANDMEID

Füüsikakonstante ja arvandmeid ülesannete lahendamiseks Gravitatsioonikonstant G = 6.67·10-11 m3/(kg·s2) Raskuskiirendus Maa pinnal g = 9,8 m/s2 Avogadro arv NA = 6,02·1023 1/mol Boltzmanni konstant k = 1,38·10-23 J/K Universaalne gaasikonstant R = k·NA = 8,31 J/(mol·K) Maa mass M = 5,98·1024 kg Maa keskmine raadius R = 6370 km Kuu mass M = 7,35·1022 kg Kuu keskmine raadius R = 1740 km Kuu keskmine kaugus Maast r = 384000 km Ainete tihedusi Vesi = 1000 kg/m3 Jää = 900 kg/m3 Raud (teras) = 7800 kg/m3 Hõbe = 10500 kg/m3 Kuld = 19300 kg/m3 Elavhõbe = 13600 kg/m3 Õhk = 1,25 kg/m3 Ainete erisoojused Vesi c...

Füüsika → Füüsika
17 allalaadimist
thumbnail
23
ppt

Termodünaamika II printsiip ( slaidid )

Termodünaamika II printsiip Rakke Gümnaasium X klass Katre Pohlak, Alari Uudla, Keijo Tomiste, Siim Kruustok, Toomas Sillamaa Aprill 2011 Mis on termodünaamika üldiselt? Termodünaamika on füüsikaharu, mille uurimisobjektiks on soojus kui energiaülekandevorm ning selle seos töö ja siseenergiaga. Termodünaamikas on kesksel kohal soojusnähtused ja nendega seonduvad mõisted (soojushulk, temperatuur, entroopia, soojusmahtuvus jne). Termodünaamika II seadus Termodünaamika teine seadus käsitleb looduslike protsesside mittepööratavust. Tal on hulk omavahel ekvivalentseid sõnastusi. Termodünaamika teine seadus väljendab termodünaamiliste protsesside statistilist iseloomu ja on aluseks nii entroopia kui ka temperatuuri mõiste defineerimisel termodünaamikas. Kuidas on seda seadust ...

Füüsika → Füüsika
19 allalaadimist
thumbnail
12
docx

Füüsika I teine kt - Jäiga keha pöörlemise dünaamika.

1. Jäiga keha pöörlemise dünaamika. Pöörlemise all mõistetakse jäiga, liikumise käigus mitte deformeeruva keha asendi (orientatsiooni) muutust. Pöörleva keha erinevad osad liiguvad piki erinevaid trajektoore, kuid säilitavad oma vastastikuse asendi. Pöörlemise dünaamika põhivõrrand: 2. Inertsimoment Inertsimoment on aditiivne suurus, mis tähendab, et keha inertsimoment on võrdne tema osade inertsimomentide summaga. Sõltub keha massist ning sellest kuidas mass on seal jaotunud. Ainepunkti inertsimoment on tema massi ja pöörlemisraadiuse ruudu korrutis. Inertsimoment iseloomustab keha inertsust pöörleval liikumisel. 3. Pöörleva keha kineetiline energia. Välisjõudude töö pöörlemisel. Keha pöörlemine ümber liikumatu telje. Pöörelgu keha ümber liikumatu telje, mille nimetame teljeks z. Elementaarmass mi joonkiiruse võib esitada kujul vi= Ri , kus Ri on mi kaugus z- teljest. Järelikult on i- nda elementaarmassi kineetilin...

Füüsika → Füüsika
384 allalaadimist
thumbnail
1
doc

Füüsika täiendõpe

Ühtlane sirgjooneline liikumine ­ keha suund ja kiirus on jäävad. Võrdsed ajavahemikud ja teepikkused. Ühtlaselt muutuv liikumine ­ keha kiirus muutub võrdsetes ajavahemikes võrdse suuruse võrra. Taustsüsteem ­ kella ja koordinaadistikuga varustatud keha, mille suhtes liikumist vaadelda. Teepikkus ­ keha poolt läbitud trajektoorilõigu pikkus. s=vt vkesk=s/t s=v0t+at2/2 Nihe ­ suunatud siglõik, mis ühendab keha algasukohta lõppasukohaga. Hetkkiirus ­ keha kiirus kindlal ajahetkel, vektoriaalne suurus. Kiirendus ­ suurus, mis näitab, kui palju muutub keha kiirus ajaühikus. a=(v-v0)/t a=v2-v02/2s Liikumisvõrrand ­ näitab, kuidas keha koordinaat sõltub ajast. Mass ­ keha inertsuse mõõt, väljendub vastupanus keha oleku muutumisele väliste jõudude toimel. Jõud ­ suurus, mille abil kirjeldatakse kehade vastastikmõju. F=ma Rõhk ­ vaadeldavale kehale mõjuv rõhumisjõud pinnaühiku kohta. Tihedus ­ suurus, mis näitab aine massi ruumalaühikus. p=mv ...

Füüsika → Füüsika
328 allalaadimist
thumbnail
5
docx

Temperatuur

Tartu Kutsehariduskeskus Iseseisev töö Füüsika Koostaja:Kristjan Hindre LE208 Juhendaja:Dimitri Luppa Tartu 2010 Temperatuur Temperatuur on füüsikaline suurus, mis iseloomustab süsteemi või keha soojuslikku olekut ehk soojusastet. Termodünaamilise tasakaalu puhul on süsteemi kõigi osade temperatuur ühesugune. Temperatuuride erinevuse korral siirdub soojus kõrgema temperatuuriga osadelt madalama temperatuuriga osadele, kuni temperatuuride ühtlustumiseni. Molekulaarkineetilise teooria kohaselt iseloomustab tasakaalustatud süsteemi temperatuur aatomite, molekulide ja teiste süsteemi moodustavate osakeste soojusliikumise intensiivsust. Seda statistilises füüsika seadustega kirjeldades on temperatuur süsteemi (keha) mikroosakeste soojusliikumise keskmise kineetilise energia mõõt. Temper...

Füüsika → Füüsika
15 allalaadimist
thumbnail
1
docx

Termodünaamika 1

Millised on peamised makro skoopilised parameetrid? Termodünaamikas kasutab nähtuste kirjeldamiseks makroparameetreid, mileks on füüsikalised suurused, mida kasutatakse ainekoguse kui terviku soojusliku oleku kirjeldamiseks. Nendeks on suurused, mida on võimalik hõlpsasti mõõta, näiteks ainekoguse mass, rõhk, ruumala, temperatuur. Suurusi rõhk, ruumala ja temperatuur nim ka olekuparameetriteks. Olek ei tähenda siin mitte agregaatolekut, vaid ainekoguse seisundit, mison määratud olekuparameetrite p, V ja T konkreetsete väärtuste kogumiga. Kui ühte olekuparameetrit muuta, muutub ka vähemalt üks teine olekuparameeter. Mis on termodünaamiline süsteem? Termodünaamikas vaadeldakse pretsesse tavaliselt suletud ehk soojuslikult isoleeritud süsteemis(näiteks suletud termopudelis). Selliseks süsteemiks on kehade kogum, mis on soojusvahetuses ainult omavahel, mitte aga väljaspool kogumit asuvate kehadega. Mida iseloomustab kahe keha temperatuuri...

Füüsika → Füüsika
28 allalaadimist
thumbnail
3
docx

Praktikum 15. Töö teoreetilised alused + tabel

Töö teoreetilised alused: dv F = s dx Vedelike sisehõõre väljendub vedelike omaduses avaldada takistust vedelikukihtide nihkumisele üksteise suhtes. Seetõttu liiguvad vedelikukihid laminaarsel voolamisel erinevate kiirustega, kusjuures igale vedelikukihile mõjub takistusjõud (1) dv dx kus µ on sisehõõrdetegur (dünaamiline viskoossus), S-vaadeldava vedelikukihi pindala, ......-vedelikukihtide liikumiskiiruse gradient, s.o. vedeliku voolukiiruse muutus pikkusühiku kohta, mis on võetud risti voolusuunaga ja pinnaga S. Ft = 6rv Üksteise suhtes nihkuvate vedelikukihtide vastastikune mõju on tingitud vedeliku molekulidevahelistest jõududest, samad jõud takistavad ka keha liikumist teda märgavas vedelikus. Seega võib keha liikumist takistava jõu leida vedelikukihtide omavahelist nihkumist takistava sisehõõrdejõu kaudu. Korrapärase (kerakujulise) keha jaoks, mis liigub väikese kiirusega lõpmatu ulatusega vedel...

Füüsika → Füüsika
96 allalaadimist
thumbnail
4
doc

Füüsika praktikumi protokoll nr 12 Takistuse temperatuurisõltuvus

Tallinna Tehnikaülikooli Füüsika instituut Üliõpilane: Teostatud: Õpperühm: Kaitstud: Töö nr. 12 OT allkiri: Takistuse temperatuurisõltuvus Töö eesmärk: Töövahendid: Metalli ja pooljuhi takistuse tempe- Metalli ja pooljuhi tükid õliga täidetud ratuurisõltuvuse võrdlemine, katseklaasides, elektriahi, termomeetrid, poolju-hi omajuhtivuse autotransformaator, oommeeter, lüliti, tekkimiseks vajali-ku ühendusjuhtmed. aktivatsioonienergia arvutamine. Skeem Töö teoreetilised alused. Küllalt laias temperatuurivahemikus sõltub juhi takistus temperatuurist järgmiselt: R = (1 + t ) [1] ...

Füüsika → Füüsika
476 allalaadimist
thumbnail
3
doc

Takistuse temperatuurisõltuvus

Tallinna Tehnikaülikooli füüsika instituut Üliõpilane: Üllar Alev Teostatud:14.02.07 Õpperühm: EAEI-21 Kaitstud: Töö nr. 12 OT Takistuse temperatuurisõltuvus Töö eesmärk: Töövahendid: Metalli takistuse temperatuuriteguri määramine. Metallist ja pooljuhist katsekehad elektriahjus, Pooljuhi omajuhtivuse aktivatsioonienergia komputeriseeritud mõõteseade (vt. lisajuhend), isiklik diskett ja määramine. vähemalt üks leht valget paberit formaadis A4. Skeem Töö käik. 1. Küsige juhendajalt konkreetne tööülesanne. 2. Katseseadet kasutage lisajuhendis esitatud suuniste järgi. 3. Mõõtmistulemused printige kindlasti välja ja ...

Füüsika → Füüsika
672 allalaadimist
thumbnail
4
pdf

Takistuse temperatuurisõltuvus

Takistuse temperatuurisõltuvus KATSEANDMETE TABEL Tabel 1: Metalli takistuse temperatuurisõltuvus Uuritav metall: m2 Uuritav pooljuht: p2 Mõõtesamm: 3oC Temp Metalli takistus Pooljuhi takistus o C 1 14 27,4 7785,8 2 17 27,7 7159,5 3 20 28,3 6508,6 4 23 28,6 5759,5 5 26 28,6 5206,9 6 29 28,9 4777,1 ...

Füüsika → Füüsika ii
684 allalaadimist
thumbnail
4
docx

Füüsika materjal

Ühtlase liikumise kiirus Ühtlaselt muutuva liikumise kiirendus Kiirus ja keha poolt läbitud teepikkus ühtlaselt muutuval liikumisel Kesktõmbekiirendus Kehale mõjuv jõud määrab keha kiirenduse. Valemina kus m on vaadeldava keha mass. Juhul kui kehale mõjub samaaegselt mitu erinevat jõudu, määrab keha kiirenduse kehale mõjuv kogujõud Kehale mõjuv kogujõud on võrdne kõikide kehale mõjuvate jõudude vektorsummaga Raskusjõud P = m g , kus g on raskuskiirendus ja m on vaadeldava keha mass. Elastsusjõud F = − k x , kus k on jäikus, x deformatsiooni suurus. Hõõrdejõud - Ühe keha libisemisel teise keha pinnal mõjub liikumissuunale vastupidine hõõrdejõud kus µ on hõõrdetegur (liugehõõrdetegur) FN on keha kokkupuutepinnaga risti olev jõukomponent (jõu normaalkomponent). Kesktõmbejõud - Ringjoonelisel liikumisel mõjub kehale ringi tsentrisse suunatud kesktõmbejõud kus v joonkiirus ja r ringi raadius. Kiirendust nimetatakse kesktõmbekiir...

Füüsika → Füüsika täiendusõpe
22 allalaadimist
thumbnail
5
doc

Küsimused gaaside ja molekulaarkineetilise teooria kohta

Küsimused gaaside ja molekulaarkineetilise teooria kohta 1) Võrdle ideaalse ja reaalse gaasi omadusi. Ideaalgaasis molekulide vastastikune toime puudub (elastseid põrkeid ei loeta vastastikuseks toimeks). Reaalgaasis on küll molekulide vastastikune toime nõrk, kui siiski nii suur, et ideaalgaasi iseloomustavad omadused enam ei kehti. Reaalsetes gaasides asuvad osakesed üksteisele nii lähedal, nende vahel tekivad Van der Waalsi jõud. Reaalsetes gaasides domineerivad osakeste vahelised tõmbejõud, tõukejõud on olulised, kui osakesed on üksteisele väga lähedal. Reaalsetel gaasidel on omaruumala, mis määrab gaasi kokkusurutavuse. Ideaalgaasis on osakeste omaruumala tühine võrreldes ruumalaga, milles nad liiguvad. Ideaalgaasi puhul sõltub osakeste ruutkeskmine kiirus ainult temperatuurist. Erinevalt ideaalgaasist muutub reaalgaas teataval rõhul ja temperatuuril vedelaks. Mida lähemal on gaas kondensatsiooni...

Keemia → Füüsikaline keemia
27 allalaadimist
thumbnail
15
ppt

Klassikaline füüsika ja lähismaailm

Klassikaline füüsika ja lähimaailm Isaac Newton (1643 ­ 1727) · Inglise füüsik, matemaatik, astronoom, teoloog ja alkeemik. Tollel ajal, kui teoloogia, loodusteaduse ja filosoofia vahel puudusid selged piirid, nimetati teda filosoofiks. · Ta õppis 1661­1665 Cambridge'i ülikoolis ja oli 1669­1701 selle ülikooli professoriks. · Londoni Kuningliku Seltsi liige, hiljem pikka aega ka selle president. · Newton töötas välja mehaanika üldised seadused, formuleeris ülemaailmse gravitatsiooniseaduse, tegi tähtsaid avastusi optikas ning pani aluse diferentsiaal- ja integraalarvutusele. · Tema peamised tööd ilmusid tema teostes "Loodusfilosoofia matemaatilised alused" (1687) ja "Optika" (1704). · Oli suur autoriteet tolleaegses teadlaste hulgas · Teenete eest lõi Inglise kuninganna ta rüütliks. Lo...

Füüsika → Füüsika
16 allalaadimist
thumbnail
3
docx

Kordamisküsimused kontrolltööks „Molekulaarfüüsika“

Kordamisküsimused kontrolltööks ,,Molekulaarfüüsika" 1. Loetle molekulaarkineetilise teooria kolm põhiseisukohta. Millist gaasi nimetatakse ideaalgaasiks? Kõik ained koosnevad molekulidest(aatomitest) Molekulid on pidevas liikumises(soojusliikumine) (lakkamatu ja korrapäratu liikumine) Kõik ained on omavahel vastastikmõkus. Ideaalgaas ­ gaas, mille molekulidevaheline vastastikmõju puudub (vastastikmõju on nii nõrk, et me ei arvesta sellega) 2. Kuidas on määratletud aatommass, molekulmass, molaarmass, ainehulk 1 mool, Avogadro arv? Millised on nende suuruste mõõteühikute nimetused? Molaarmass on aine ühe moli mass. MX kg/mol Avogadro arv on ühes molis sisalduv aatomite arv. N A=6,02 x 10231/mol 1 mool on selline kogus ainet, mille mass grammides võrdub selle aine aatommassiga. Elemendi aatommassiks nim suhtelist suurust, mis leitakse jagades elemendi mol...

Füüsika → Füüsika
7 allalaadimist
thumbnail
4
docx

Molekulaarfüüsika

Kordamisküsimused kontrolltööks „Molekulaarfüüsika“ 1. Loetle molekulaarkineetilise teooria kolm põhiseisukohta. Millist gaasi nimetatakse ideaalgaasiks?  Kõik kehad koosnevad molekulidest  Molekulid on pidevas kaootilises liikumises  Kõikide kehade molekulid on seotud vastastikmõjuga  Ideaalgaas on reaalse gaasi lihtsustatud mudel,(1)kus gaasimolekulid loetakse punktmassideks,(2)molekulide põrked anuma seintega on absoluutselt elastsed ning (3) molekulide vahel puudub vastastikmõju. 2. Kuidas on määratletud aatommass, molekulmass, molaarmass, ainehulk 1 mool, Avogadro arv? Millised on nende suuruste mõõteühikute nimetused?  Aatommass – ühe aatomi mass aatommassiühikutes – ühik 1/12 süsiniku aatomi C12 massist  Molekulmass – ühe molekuli mass aatommassiühikustes – ühik  Molaarmass - ühe mooli aine mass...

Füüsika → Molekulaarfüüsika
18 allalaadimist
thumbnail
2
doc

Molekulaarfüüsika alused

Molekulaarfüüsika alused · Molekulaarfüüsika põhialused: 1) Kõik ained koosnevad osakestest. 2) Oakesed on pidevas korrapäratus liikumises. 3) Osakeste vahel mõjuvad väikestel kaugustel nii tõmbe- kui ka tõukejõud. · Soojusliikumine ­ aineosakeste pidev korrapäratu liikumine, mille iseloom sõltub aine agregaatolekust. · Ainehulk () ­ 1 mool on ainehulk, milles on Avogadro arv (NA = 6, 02 · 1023 1/mol) molekule. · Molaarmass () ­ 1 mooli antud aine mass (kg/mol). · Molekulmass (m0) ­ ühe molekuli mass. m0 = M / NA. · Ideaalne gaas ­ gaas, mille molekulide mõõtmeid pole vaja arvestada ja mille molekulidevaheline vastastikmõju on tähtsusetult väike. · Rõhk ­ on arvuliselt võrdne pinnaühikule risti mõjuva jõuga. p = F / S [Pa = N / m2]. · Gaasi rõhk ­ on tingitud gaasimolekulide põrgetest vastu anuma seinu. p = 1/3m0nv2. m0 ...

Füüsika → Füüsika
90 allalaadimist
thumbnail
3
docx

TERMODÃœNAAMIKA 1-3

TERMODÜNAAMIKA Võrdlus mehaanikaga · Keha-termodünaamiline keha · Kogu keha käitumine ühtemoodi ­ punktmass, keha oleku muutused (jää-vesi-aur) · Erinevused ­ mehaanikas vaatleme asukoha muutust ja seda põhjustavaid tegureid; termodünaamikas olekumuutuseid ja seda põhjustavaid tegureid · TDs ruumiline asukoht pigem sekundaarne, uuritakse olekumuutuseid · Oleku kirjeldamiseks võetud kasutusele 3 parameetrit ­ rõhk, ruumala, temperatuur Mida kirjeldavad parameetrid · Rõhk ­ pindala kohta tulev jõud, tekib molekulide põrgetel keha ümbritseva keskkonnaga · Temperatuur ­ keha siseenergiat iseloomustav suurus · Ruumala ­ aine hulka iseloomustav suurus Esimene süsteem Termodünaamilisi seoseid hakatakse kirjeldama ideaalse gaasi abil. Ideaalne gaas ­ 1) molekulidevahelised jõud puuduvad 2) molekulid on punktmassid Sellises süsteemis kirjeldatakse termodünaamiliste parameetrite vahelised seosed ja ...

Füüsika → Füüsika
25 allalaadimist
thumbnail
12
docx

Takistuse temperatuurisõltuvus

KATSEANDMED Tabel 1. Takistuse temperatuurisõltuvus Temperatuu Metalli Pooljuhi Nr. r °C takistus Ω takistus Ω 1/T lnR 0,0032 8,4664 1 30 117,7 4752,5 99 26 0,0032 8,4078 2 32 118,6 4482,3 77 92 0,0032 8,3131 3 34 119,5 4077,1 56 41 0,0032 8,2794 4 36 120,3 3942 35 43 ...

Füüsika → Füüsika ii
38 allalaadimist
thumbnail
20
pdf

Füüsika eksam

Füüsika eksam 1. Liikumise kiirendamine. Taustsüsteem on mingi kehaga seotud ruumiliste ja ajaliste koordinaatide süsteem. Kohavektor on vektor, mille alguspunkt ühtib koordinaatide alguspunktiga. Trajektoor on keha või ainepunkti teekond liikumisel ruumis või tasandil. Kiirus on vektoriaalne suurus, mis võrdub nihke ja selle sooritamiseks kulunud ajagavahemiku suhtega(kiirusvektor on igas trajektoori punktis suunatud mööda trajektoori puutujat selles punktis)  Kiirendus on kiiruse muutus ajaühikus. Kiirendus näitab keha kiiruse muutumist ajaühikus (Kiirendusvektor lahutub kiirenevalt liikuva keha trajektoori igas punktis trajektoori puutuja sihiliseks tangentsiaalkiirenduseks ning sellega risti olevaks normaalkiirenduseks ehk tsentrifugaalkiirenduseks) 2. Ühtlaselt muutuv sirgjooneline liikumine. a=consT =>kolmikvalem, Keha liigub sirgjoonelisel tra...

Füüsika → Füüsika
91 allalaadimist
thumbnail
12
xlsx

Lineaarne sõltuvus

Lineaarne Regressioon Nimi: Birgit Esimene graafik Perenimi: Albert y Grupp: IASB30 x Mõõtmiste algus: 10/18/2014 14:29 Mõõtmiste lõpp: 10/18/2014 14:38 Teine Graafik Uuritav metall: m2 x Uuritav pooljuht: p2 y Mõõtesamm: 10 s X-telg Y-telg X-telg Nr Temp. Metall (takistus Ω) Pooljuht Temp. K 1 10 283 42181 9664.6 0.003534 2 9 282 42181 9394.5 0...

Füüsika → Füüsika
16 allalaadimist
thumbnail
21
doc

Kordmisküsimused eksamiks

KORDAMISKÜSIMUSED 1. Millal on kahe vektori vektorkorrutis positiivne? (Sin a >0) a ×b =ab sin 2. Millal on kahe vektori vektorkorrutis negatiivne? a ×b =ab sin (Sin a <0) 3. Millal on kahe vektori skalaarkorrutis positiivne? kui on väiksem kui 90 kraadi (I ja IV veerand) 4. Millal on kahe vektori skalaarkorrutis negatiivne? kui on suurem kui 90 kraadi (II ja III veerand) 5. Millal on kahe vektori vektorkorrutis 0? Kui vektorid on paralleelsed 6. Millal on kahe vektori skalaarkorrutis 0? Kui koosinus on null ehk vektorid on risti 7. Nimetada SI-süsteemi põhiühikud. teepikkus ­ meeter massiühik ­ kilogramm ajaühik ­ sekund elektrivoolu tugevus ­ amper termodünaamiline temperatuur ­ kelvin ainehulk ­ mool valgusühik - kandela 8. Kirjutada kiiruse ühik põhiühikute kaudu kiirus = teepikkus/aeg (meeter/sekundiga) 9. Kirjutada kiirenduse ühik põhiühikute kaudu. ...

Füüsika → Füüsika
167 allalaadimist
thumbnail
7
docx

KESKKONNAFÜÜSIKA KT-Valemid

Ühtlane sirgjooneline liikumine Mõisted: asukoha muutus (läbitud teepikkus) ∆x, aeg ∆t, kiirus v ∆ x x 2−x 1 Keskmine kiirus: v= = ∆ t t 2−t 1 dx Hetkkiirus: v= dt m Ühik (v): s Ühtlaselt kiirenev liikumine Mõisted: asukoha muutus (läbitud teepikkus) ∆x, aeg ∆t, kiirus v, kiirendus a ∆ v v −v 0 v=v + a ∆ t Kiirendus: a= = ⇛ 0 dx=(v+v0)/2xt ∆t ∆t m Ühik (a10): s2 Newtoni 2. seadus Mõisted: keha kiirendus a, kehale mõjuv jõud F (summaarne jõud), keha mass m F Kiirendus: a= ⇛ F=am m m Ühik (F): 1 N =1 2 ⋅ 1 kg s Gravitatsioon Mõisted: gravitatsioonilise vabalangemise kiirendus g, keha mass m, gravitatsiooniline konstant G, Maa mass M, Maa r...

Füüsika → Keskkonafüüsika
2 allalaadimist
thumbnail
10
doc

Kontrolltöö II Üldloodusteadus

Kontrolltöö II Üldloodusteadus 1. Üks mikroliiter on 109 m3, 100 mm3, 1021 Å3 2. Kui suur on 18*1017 molekuli sisaldava metanooli tilga mass? N(CH3OH)= 18*1017 M(CH3OH)=12*1+1*4+16*1= 32g/mol NA=6,02*1023 mol-1 m 18 *1017 * 32 g / mol n= m(CH 3OH ) = = 9,6 * 10 -5 g M 6,02 * 10 23 mol -1 N n= NA m N Vastus: Metanooli tilga mass on 9,6*10-5 grammi = M NA N *M m= NA Mitu liitrit on normaaltingimustel 6x1022 molekuli gaasilist lämmastikku? N(N2)=6*1022 NA=6,02*1023 mol-1 N 6 *10 22 * 22,4dm 3 / mol n= V = ...

Keemia → Üldloodusteadus
12 allalaadimist
thumbnail
30
docx

Füüsika eksam vastustega: liikumine

Füüsika eksam 1. Liikumise kiirendamine. Taustsüsteem on mingi kehaga seotud ruumiliste ja ajaliste koordinaatide süsteem. Kohavektor on vektor, mille alguspunkt ühtib koordinaatide alguspunktiga. Trajektoor on keha või ainepunkti teekond liikumisel ruumis või tasandil. Trajektoori saab korrektselt kasutada ainult punktmassi korral. Kiirus on vektoriaalne suurus, mis võrdub nihke ja selle sooritamiseks kulunud ajagavahemiku suhtega(kiirusvektor on igas trajektoori punktis suunatud mööda trajektoori puutujat selles punktis)  Kiirendus on kiiruse muutus ajaühikus. (Kiirendusvektor lahutub kiirenevalt liikuva keha trajektoori igas punktis trajektoori puutuja sihiliseks tangentsiaalkiirenduseks ning sellega risti olevaks normaalkiirenduseks ehk tsentrifugaalkiirenduseks) 2. Ühtlaselt muutuv sirgjooneline liikumine. a=consT =>kolmikvalem, Keha liigub si...

Füüsika → Füüsika
45 allalaadimist
thumbnail
34
docx

Füüsika eksami konspekt

Füsa eksami konspekt 1, Liikumise kirjeldamine Taustsüsteem on mingi kehaga seotud ruumiliste ja ajaliste koordinaatide süsteem. Kohavektor on vektor, mille alguspunkt ühtib koordinaatide alguspunktiga. Trajektoor on keha või ainepunkti teekond liikumisel ruumis või tasandil. Trajektoori saab korrektselt kasutada ainult punktmassi korral. Kiirus on vektoriaalne suurus, mis võrdub nihke ja selle sooritamiseks kulunud ajavahemiku suhtega (kiirusvektor on igas trajektoori punktis suunatud mööda trajektoori puutujat selles punktis). Kiirendus on kiiruse muutus ajaühikus. (Kiirendusvektor lahutub kiirenevalt liikuva keha trajektoori igas punktis trajektoori puutuja sihiliseks tangentsiaalkiirenduseks ning sellega risti olevaks normaalkiirenduseks ehk tsentrifugaalkiirenduseks) 2,* Ühtlaselt muutuv sirgjooneline liikumine. a=consT =>kolmikvalem, Keha liigub sirgjoonelisel trajektooril, kusjuures tema kiirendus on nii suunalt kui suurusel...

Füüsika → Füüsika
44 allalaadimist
thumbnail
12
doc

MEHAANIKA JA MOLEKULAARFÜÜSIKA, PÕHIMÕISTED NING SEADUSED

MEHAANIKA JA MOLEKULAARFÜÜSIKA PÕHIMÕISTED NING SEADUSED Füüsika käsitleb looduse kõige üldisemaid nähtusi ja seaduspärasusi. Need ongi füüsikalised objektid. Objekt on see, millele tegevus on suunatud. Füüsikaline suurus on füüsikalise objekti mõõdetav iseloomustaja (karakteristik). Füüsika objekt (loodusnähtus) on olemas ka ilma inimeseta. Füüsikaline suurus on inimlik vahend objekti kirjeldamiseks. Suuruse mõõtmine on võrdlemine mõõtühikuga. Rahvusvaheline mõõtühikute süsteem SI kasutab 7 füüsikalist suurust põhisuurustena. Nende suuruste mõõtühikud on põhiühikud. Kõik teised suurused ja ühikud on määratud vastavalt põhisuuruste ning põhiühikute kaudu. Põhisuurused on: pikkus, aeg, mass, aine hulk, temperatuur, voolutugevus ja valgustugevus. Nende ühikud on vastavalt: meeter, sekund, kilogramm, mool, kelvin, amper ja kandela. Skalaarne suurus on esitatav vaid ühe mõõtarvuga, millele lisandub mõõtühik. Skalaarsed suurused on il...

Füüsika → Füüsika
152 allalaadimist
thumbnail
54
doc

Füüsikaline maailmapilt (I osa)

Füüsikaline maailmapilt (I osa) Füüsikaline maailmapilt (I osa)......................................................................................1 Sissejuhatus................................................................................................................1 1.Loodus ja füüsika....................................................................................................2 1.1.Loodus..............................................................................................................2 1.2. Füüsika............................................................................................................2 1.2.1. Aja, pikkuse, pindala, ruumala ja massi mõõtmine läbi aegade...........9 1.2.2.Fundamentaalkonstandid ja mis juhtuks, kui need muutuksid...........11 1.2.3. Füüsika ajaloost..................................................................................13 ...

Füüsika → Füüsika
15 allalaadimist
thumbnail
5
odt

Füüsika eksami kordamisküsimused

Jõud, jõumoment, vastasmõju, olek Jõud on suurus, mille abil kirjeldatakse kehade vastasmõju. Jõumomendiks M = F · l nimetatakse jõu F ja tema õla pikkuse l korrutist; jõu õlg on võrdne jõu mõjumissihi kaugusega pöörlemisteljest. Vastasmõju ei tähenda midagi enamat kui vastastikust ("sina mulle - mina sulle") mõjustamist. Füüsikas on vastasmõju tagajärjeks oleku muutus. Oleku all mõistame keha kirjeldavate parameetrite väärtuste (täielikku) komplekti 2. Tasakaalu tingimused Keha on tasakaalus parajasti siis, kui: a) temale mõjuvate jõudude summa on null; b) temale mõjuvate jõumomentide summa on null. 3. Kiirus; kiirendus, normaalkiirendus; tangentsiaalkiirendus Liikumisvõrrandi esimest tuletist aja järgi nimetatakse kiiruseks. See näitab, kui kiiresti liigub keha antud ajahetkel. Liikumisvõrrandi teist tuletist aja järgi (kiiruse esimest tu...

Füüsika → Füüsika
19 allalaadimist
thumbnail
6
doc

STOKES´I MEETOD

TALLINNA TEHNIKAÜLIKOOL Füüsikainstituut Üliõpilane: Teostatud: Õpperühm: Kaitstud: Töö nr. 15 OT STOKES`I MEETOD Töö eesmärk: Töövahendid: Vedeliku sisehõõrdeteguri määramine Klaasanum uuritava vedelikuga, kruvik, ajamõõtja, toatemperatuuril mõõtejoonlaud, areomeeter Töö teoreetilised alused: Vedelike sisehõõre väljendub vedelike omaduses avaldada takistust vedelikukihtide nihkumisel üksteise suhtes. Seetõttu liiguvad vedelikukihid laminaarsel voolamisel erivevate kiirustega, kusjuures igale vedelikukihile mõjub takistusjõud dv F =S (1) ...

Füüsika → Füüsika
234 allalaadimist
thumbnail
2
doc

Mehaanika ja soojuse valemid

I. MEHAANI KA I. Kinemaatika Koordinaat Nihe Kiirus Kiirendus s Ühtlane sirgjooneline liikumine x x 0 vt s vt v a0 t ...

Füüsika → Mehaanika ja soojuse valemid
20 allalaadimist
thumbnail
13
docx

Ãœldloodusteadus

1) Aine on mateeria, millest koosnevad kõik kehad. See koosneb põhiliselt aatomituumadest ja elektronidest, mis enamasti esinevad ioonide, aatomite ja molekulide kujul. Ainete all mõistetakse loodusteaduses ja tehnikas ka keemilisi aineid. 2) Ained koosnevad osakestest, kuna nad võivad iseeneslikult seguneda (difusioon - mateeria või energia ülekanne piirkonnast suure kontsentratniooniga väikse kontsentratsiooniga piirkonda). 3) Pideva soojusliikumise tõestuseks on difusioon (näiteks energia ülekandmine ühest osakest teisele nende osakeste võnkumise kaudu) ja Browni liikumine. Nõusolevalt Eincshteini ja Smoluhhovski molekulaar-kineetilise teooriaga piisavalt väikesele osakesele annavad keskkonna moolekulid mittekeskmist ja ­kompenseeritud (kui see on olukorras, kus on suhteliselt suur osake) impulssi, mis paneb osake kaootiliselt liikuma oma kiiruse suuruse ja suuna muutudes. 4) Agregaatolek on...

Loodus → Loodusteadus
2 allalaadimist
thumbnail
13
docx

Konspekt füüsika eksamiks!

1. Sissejuhatus. Mõõtühikud SI ­ rahvusvaheline mõõtühikute süsteem A ­ põhiühikud B ­ tuletatud ühikud C ­ täiendavad ühikud Eesliite nimetus Kordsus algühiku suhtes Eesliite tähis Tera 1012 T Giga 109 G Mega 106 M Kilo 103 K Hekto 102 h Deka 10 Da Detsi 10-1 D Senti 10-2 C Milli 10-3 M Mikro 10-6 µ Nano 10-9 N Piko 10-12 P 1 min = 60 s ...

Füüsika → Füüsika
122 allalaadimist
thumbnail
9
doc

Füüsika I Praktikum 15 - STOKES´I MEETOD

Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Taivo Tarum Teostatud: Õpperühm: EAEI20 Kaitstud: Töö nr: 15 OT allkiri: STOKES´I MEETOD Töö eesmärk Töövahendid Vedeliku sisehõõrdeteguri Klaasanum uuritava määramine toatemperatuuril. vedelikuga, kruvik, ajamõõtja, mõõtejoonlaud, areomeeter. Töö teoreetilised alused Vedelike sisehõõre väljendub vedelike omaduses avaldada takistust vedelikukihtide nihkumisele üksteise suhtes. Seetõttu liiguvad vedelikukihid laminaarsel voolamisel erinevate kiirustega, kusjuures igale vedelikukihile mõjub takistusjõud dv F = S dx , (1) kus on sisehõõrdetegur (dü...

Füüsika → Füüsika
538 allalaadimist
thumbnail
6
doc

Keemia aluste kokkuvõtlik konspekt

I TERMODÜNAAMIKA ALUSED I Termodünaamika pôhimôisted. Termodünaaika I seadus ­ energia ei teki, ega kao vaid läheb ühest vormist teise. Isoleeritud süsteemis on U jääv. Keemilise reaktsiooni soojusefekt vôrdub reaktsiooni saaduste ja lähteainete energiate vahega. Entalpia e. soojussisaldus ­ [H = U + pV = U + nRT]. II Hessi seadus. Termokeemilised vôrrandid ­ selline reakts. vôrrand, millele on lisatud reakts.i soojusefekt. Q- efekt sôltub T-st ja P-st. Hessi seadus ­ reaktsiooni Q-efekt sôltub ainult lähteainete ja saaduste iseloomust (ja oleku parameetritest), kui ei sôltu reaktsiooni kulgemsie viisist ega vahe etappidest. Tekkeentalpia ­ [H = Hj,f - Hi,f]: ühe mooli aine tekkimisel lihtainetest eraldub vôi neeldub soojust st. ühe mooli aine tekkimise Q-efekt. Pôlemisentalpia ­ [Hc = Hj,c - Hi,c]. III Entroopia. Entroopia ­ selline olekufunktsioon, mis isel. süsteemi korrapäratust. Energia kulub entroopia kasvuks: [Hsul = TS...

Keemia → Keemia alused
146 allalaadimist
thumbnail
1
doc

Füüskia 1 spikker

1.Skalaarid ja vektorid:Suurusi mille määramiseks piisab ainult arvväärtustest,nimetatakse skalaarideks. 18.Harmooniliste võnkumiste liitmine: -Kahe (aeg,mass,inertsimoment jne) Suurusi ,mida ühesuguse sagedusega(),samasihiliste,kuid erinevate iseloomustab arvväärtus(moodul) ja suund, nimetatakse amplituudidega ja algfaasidega võnkumise liitmisel on 31.Molekulaarkineetilise teoooria põhivõrrand: all vektoriks.1.Vektori korrutamine skalaariga: summaks jäle sama sagedusega harmooniline mõistetakse avaldist,mis seob gaasi molekulide 2.Vektorite liitmine: võnkumine.-Kahe samasihilise,kuid erineva sagedusega kineetilise energia gaasi rõhu ja ruumalaga.Molekulide 3.Vektorite skalaarne korrutamine: kahe vektori harmoonilise võnkumise liitmisel on tulemuseks keskmise kinetilise energia s...

Füüsika → Füüsika
261 allalaadimist
thumbnail
31
pdf

Füüsika meie ümber

Füüsika meie ümber 1. Sissejuhatus ............................................................................................... 1 2. Suvine loodus ................................................................................................ 7 3. Õues ja tänaval .............................................................................................. 9 4. Sport............................................................................................................ 11 5. Inimene ja tervishoid ................................................................................... 16 6. Tuba ............................................................................................................ 20 7. Köök............................................................................................................ 23 8. Vannituba ja saun ......................................................

Füüsika → Füüsika
37 allalaadimist
thumbnail
7
docx

Maateaduste alused II 1. kontrolltöö

Geomorfoloogia teadus Maa reljeefist ja pinnavormidest Klimatoloogia teadus Maa kliimast kui pikaajalisest ilmade reziimist Meteoroloogia teadus Maa atmosfaarist ja selles toimuvatest protsessidest Hüdroloogia teadus Maa hudrosfaarist ja selles toimuvatest protsessidest Biogeograafia teadus elusorganismide ja nende koosluste geograafilisest levikust maastikuökoloogia teadus, mis uurib aineringete ja energiavoogude, samuti organismide ja nende koosluste dunaamikat loodusgeograafilistes kompleksides e. maastikes ekliptika tasapind- ümber päikese tiirleva maa orbiidi tasand afeel- Päikesest kaugeim punkt 4.juuli periheel- Päikesele lähim punkt 3.jaanuar geoid- Maa toeline kuju e Maa gravitatsioonivälja ekvipotentsiaalne pind, mis ühtib merede ja ookeanide häirimatu veepinna selle mottelise pikendusega mandritel poordellipsoid- ruumiline keha, mis saadakse ellipsi poorlemisel ümber oma lühema telje Maa lapikuse väljendamise valem- f=...

Geograafia → Maateadused
7 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun