Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Määramata integraal (0)

1 Hindamata
Punktid
Vasakule Paremale
Määramata integraal #1 Määramata integraal #2 Määramata integraal #3 Määramata integraal #4 Määramata integraal #5 Määramata integraal #6 Määramata integraal #7 Määramata integraal #8 Määramata integraal #9 Määramata integraal #10 Määramata integraal #11
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 11 lehte Lehekülgede arv dokumendis
Aeg2009-01-07 Kuupäev, millal dokument üles laeti
Allalaadimisi 191 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor theman87 Õppematerjali autor
õppematerjal

Sarnased õppematerjalid

thumbnail
12
pdf

MÄ Ä R AMA T A I N T EGR A A L

Siis algfunktsiooni definitsiooni kohaselt: F1( x ) = f ( x ) ; F2( x ) = f ( x ) F ( x ) - F ( x ) = 0 ehk [ F ( x ) - F ( x ) ] = 0 2 1 2 1 Nulltuletisteoreemi kohaselt (kui funktsioon omab vahemiku igas punktis tuletist ja see tuletis on kõikjal 0, siis funktsioon on konstantne) on F2 ( x ) - F1 ( x ) = const m.o.t.t. Def Funktsiooni y = f(x) määramata integraaliks nimetatakse avaldist y = f ( x) dx = F(x) + C, kus F(x) on funktsiooni f(x) algfunktsioon ja C konstant, mida nimetatakse integreerimiskonstandiks. Muutujat x nimetatakse integreerimismuutujaks. Integraali märgi all olevat funktsiooni f(x) nimetatakse integreeritavaks funktsiooniks. Integraalialuseks avaldiseks nimetatakse avaldist f(x)dx. Näide: 2 xdx = x +C 2 1. MÄÄRAMATA INTEGRAALI OMADUSED 1

Matemaatika
thumbnail
7
pdf

Määramata integraalid

KÕRGEM MATEMAATIKA III Matemaatilise analüüsi elemendid 3. Määramata integraalid Õppekirjandus: [1] Abel, E., Kokk, K. Kõrgem matemaatika (Harjutusülesanded). EMS, Tartu, 2003. [2] Lõhmus, A., Petersen, I., Roos, H. Kõrgema matemaatika ülesannete kogu. "Valgus", Tallinn, 1982. [3] Loone, L., Soomer, V. Matemaatilise analüüsi algkursus. "TÜ Kirjastus", Tartu, 2006. [4] Tõnso, T., Veelmaa, A. Matemaatika XII klassile. "Mathema", Tallinn, 1995. [5] Piskunov, N. Diferentsiaal- ja integraalarvutus. "Valgus", Tallinn, 1981. 3

Kõrgem matemaatika
thumbnail
9
doc

Diferentseerimise ja integreerimise valemid

=0 B C Tinglik ekstreemum z= f (x,y), kus lisatingimus (x,y) = 0 F (x,y,) = f (x,y) + (x,y) z z + = 0 ja + = 0 ning (x,y) = 0 x x y y Määratud integraal b b b ositi udv = uv a ­ vdu b b f ( x)dx = F ( x) a = F (b) ­ F ( a )

Diferentsiaal-ja integraalarvutus
thumbnail
9
doc

INTEGREERIMISE VALEMID

=0 B C Tinglik ekstreemum z= f (x,y), kus lisatingimus (x,y) = 0 F (x,y,) = f (x,y) + (x,y) z z + = 0 ja + = 0 ning (x,y) = 0 x x y y Määratud integraal b b b ositi udv = uv a ­ vdu b b f ( x)dx = F ( x) a = F (b) ­ F ( a )

Matemaatiline analüüs
thumbnail
11
doc

Matemaatiline analüüs - konspekt II

suurused a ja b määrata: juhul x- seosest lim x- (f(x)-kx-b)=0 millest saame, 1 et k= lim x- f(x)/x ^ b= lim x-(f(x)-kx); *juhul x+ seosest lim x+ (f(x)-kx-b)=0, millest saame, et k=lim x+ f(x)/x ^ b= lim x+(f(x)-kx). Kui uuritaval juhul vaadeldavad piirväärtused suuruste k ja b leidmiseks eksisteerivad, siis eksisteerib kaldas., kui ei, siis mitte. 35. Määramata integraali omadused Selles punktis tõestame kolm määramata integraali omadust ja kasutame neid omadusi integreerimisel. Omadus 1. [ f ( x ) + g ( x )]dx = f ( x )dx + g ( x )dx , s.t. kahe funktsiooni summa määramata integraal on võrdne nende funktsioonide määramata integraalide summaga. Kaks määramata integraali on võrdsed, kui nad erinevad teineteisest ülimalt konstandi võrra ehk nende tuletised on võrdsed. Näitame seda. Võttes vasakult poolt tuletise, saame punkti 4.1

Matemaatiline analüüs
thumbnail
273
pdf

Lembit Pallase materjalid

30. L'Hospitali reegel 31. L'Hospitali reegel teistel m¨aa¨ramatuse juhtudel 32. Taylori valem 33. Funktsioonide ex , sin x ja cos x arendid Maclaurini valemi j¨argi 34. Funktsiooni kasvamine ja kahanemine 35. Funktsiooni lokaalsed ekstreemumid 36. Funktsiooni suurim ja v¨ahim v¨a¨artus antud l~oigul 37. Funktsiooni graafiku kumerus ja n~ogusus. K¨aa¨nupunktid 38. Funktsiooni graafiku as¨ umptoodid 39. Algfunktsioon ja m¨aa¨ramata integraal 40. Integraalide tabel 2 41. M¨aa¨ramata integraali omadusi 42. Integreerimine muutuja vahetusega 43. Ositi integreerimine 44. Osamurrud ja nende integreerimine 45. Ratsionaalse murru lahutamine osamurdudeks 46. M~onede trigonomeetriliste funktsioonide klasside integreerimine 47. Irratsionaalavaldiste integreerimine 48. M¨aa¨ratud integraali m~oiste 49. M¨aa¨ratud integraali omadused 50. M¨aa¨ratud integraali arvutamine

Matemaatiline analüüs
thumbnail
55
pdf

Matemaatiline analüüs II loengukonspekt

normaaliks punktis Q 0 . Näide 10. Leida puutujatasand ja normaal pinnale z xy x y punktis Q 0 1, 1, 3 . Leiame osatuletised z x y 1, z y x 1; z x 1, 1 2, z y 1, 1 2 Seega puutujatasand punktis Q 0 2x 2y z d 0 2 1 2 1 3 d 0 d 1 2x 2y z 1 0 Normaal on siis n 2, 2, 1 . 1.2 Määratud integraal ja selle rakendusi Määratud integraaliks nimetati integraalsummade piirväärtust b f x dx lim xi 0 f i xi a Newton-Leibnizi valem lubab määratut integraali arvutada määramata integraali f x dx F x C abil järgmiselt b b f x dx Fb Fa Fx a . a

Matemaatiline analüüs ii
thumbnail
142
pdf

Matemaatilise analüüsi konspekt TTÜ's

. . . 88 4.3 Funktsiooni suurima ja v¨ahima v¨a¨artuse leidmine l~oigul. . . . . . 92 4.4 Joone kumerus, n~ogusus ja k¨a¨anupunktid. . . . . . . . . . . . . . 92 4.5 Joone as¨ umptoodid. . . . . . . . . . . . . . . . . . . . . . . . . . 96 5 Integraalid 103 5.1 Algfunktsioon ja m¨a¨aramata integraal. . . . . . . . . . . . . . . . 103 5.2 Integraalide tabel. M¨a¨aramata integraali omadused. . . . . . . . 104 5.3 Asendusv~ote ja ositi integreerimine m¨a¨aramata integraali aval- damisel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4 Ratsionaalfunktsioonide integreerimine. Ratsionaalfunktsiooni in- tegraalile taanduvad integraalid. . . . . . . . . . . . . . . . . . . 111 5

Matemaatiline analüüs




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun