Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

11. klassi materjal matemaatikas (1)

5 VÄGA HEA
Punktid

Lõik failist

Aritmeetiline jada-Jada, mille iga liige alates teisest on võrdne eelneva liikme ja selle jada jaoks mingi kindla arvu summaga nimetatakse aritmeetiliseks jadaks .
Seda kindlat arvu nimetatakse aritmeetilise arvu jadaks ja tähistatakse tähega d.
an=a1+(n-1)d an+1=an+d » an+1-an=d sn= a1+an/2 x n või sn=2a1+(n-1)d/2
Geomeetriline jada- Jada, mille iga liige alates teisest on võrdne eelneva liikme ja antud jada jaoks mingi kindla arvu korrutisega nimetatakse geomeetriliseks jadaks.
Seda kindlat arvu nimetatakse teguriks ja tähistatakse tähega q
n-1 n
an=a1 x q q=an+1/n sn=a1(q -1)/q-1
Lõpmatult kahaneva geomeetrilise jada summa- S=a1/1-q
Arvu „A“ nimetatakse jada „an“ tõkestamatul kasvamisel ja

11-klassi materjal matemaatikas #1 11-klassi materjal matemaatikas #2 11-klassi materjal matemaatikas #3 11-klassi materjal matemaatikas #4 11-klassi materjal matemaatikas #5 11-klassi materjal matemaatikas #6
Punktid 100 punkti Autor soovib selle materjali allalaadimise eest saada 100 punkti.
Leheküljed ~ 6 lehte Lehekülgede arv dokumendis
Aeg2010-12-05 Kuupäev, millal dokument üles laeti
Allalaadimisi 501 laadimist Kokku alla laetud
Kommentaarid 1 arvamus Teiste kasutajate poolt lisatud kommentaarid
Autor kajatiidema Õppematerjali autor
Aritmeetiline jada, geomeetriline jada, Funktsiooni kasvamis-ja kahanemispiirkond, Positiivsus piirkonna määramine, negatiivsus piirkonna määramine, ekstreemumpunktid, puutujatõus ja puutujavõrrand, liitfunktsioon, trigonomeetrilised võrrandid, logaritmvõrrand, logaritmfunktisoon, eksponentvõrrand, eksponentfunktsioon, paaris- ja paaritufunktsioon, piirväärtus, funktsioonid.

Sarnased õppematerjalid

thumbnail
12
docx

Matemaatika 11.klass valemid

Valemid, teoreemid, seosed, tunnused, tingimused MATEMAATIKA EKSAMIL XI KLASSIS 1) a2-b2 = (a+b)(a-b) 2) a3 + b3=(a+b)(a2-ab+b2) 3) a3 - b3=(a-b)(a2+ab+b2) 4) (a+b)3 =a3+3a2b+3ab2+b3 5) (a-b)3 =a3-3a2b+3ab2-b3 −b ± √ b2−4 ac 2 6) a) lahenda ax + bx+c =0 2a b) tegurda : ax2 + bx+c= a( x− x1 )( x−x 2) c) tegurda ax3 + bx2+ax+b= x2(ax+b)+ax+b = (ax+b)(x2+1) 7) lim  an  bn   lim an  lim bn n  n  n  8) lim  an  bn   lim an  lim bn n  n  n  9) lim  anbn   lim an  lim bn n  n  n  an 10) lim  lim an  lim bn n  bn n  n  11) Korrutise tuletise sõnastus ja valem (u * v ) ´ = Korrutise tuletis võrdub esimese teguri tu

Matemaatika
thumbnail
19
doc

Matemaatika valemid.

1. Reaalarvud ja avaldised a, kui a 0 · Arvu absoluutväärtus ­ a = - a, kui a < 0 · Astme mõiste ja omadused a 0 = 1, kui a 0 a1 = a a n = a a a a, kui n N 2 1 a-k = , kui a 0 ja k Z või ak kui a > 0 ja k Q m n a m , kui a > 0, m Z ja n N a = n 2 0, kui a = 0, m N 1 ja n N1

Matemaatika
thumbnail
54
doc

Valemid ja mõisted

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü - oomega

Matemaatika
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK Α α  alfa Ν ν  nüü Β β  beeta Ξ ξ  ksii Γ γ  gamma Ο ο  omikron Δ δ  delta Π π  pii Ε ε  epsilon Ρ ρ  roo Ζ ζ  dzeeta Σ σ  sigma Η η  eeta Τ τ  tau Θ θ  teeta Υ υ  üpsilon Ι ι  ioota Φ φ  fii Κ κ  kap

Algebra I
thumbnail
7
doc

Matemaatika valemid kl 10-11 12 tõenäosus

10.klass a1 b1 c1 1. Reaalarvude piirkonnad kui D = 0; D x = 0; D y = 0, siis = = a 2 b2 c 2 2. Astme mõiste üldistamine a m a n = a m +n c)pole lahendeid a1 b1 c a m : a n = a m -n , kui m > n kui D = 0; D x 0; D y 0, siis = 1 a 2 b2 c 2 ( a b) n = a n b n n 12. Ruutvõrrandi süsteemid a an 13. Kolmerealine determinant = n , kui b 0 b b 14. Kolme tundmatug

Matemaatika
thumbnail
9
doc

Matemaatiline analüüs - konspekt I

x 0 x Funktsiooni sin x väärtuste saamiseks kasutame trigonomeetrilist ringi, s.o. ringi raadiusega 1. Valime selle ringi tasandil Cartesiuse ristkoordinaadistiku, votes ringi keskpunkti 0 koordinaatide alguseks. Olgu A ringjoone lõikepunkt u-telje, s.o. esimese koordinaattelje positiivse osaga. Mistahes punkt P ringjoonel on määratud, kui on teada nurk, mille moodustab radius OP u-telje positiivse osaga. Seda nurka mõõdetakse kõrgemas matemaatikas tavaliselt nn. Absoluutmõõdus, s.t. kaare AP pikkusega lugedes selle pikkuse positiivseks või negatiivseks selle järgi, kas punkt P on saadud punktist A liikumisel mööda ühikringjoont positiivses või negatiivses suunas. Näiteks nurkade 360, 180, 90, 45 suurused absoluutmõõdus on vastavalt 2, , , . Üldiselt o -se 2 4

Matemaatiline analüüs
thumbnail
32
doc

Matemaatika I küsimused ja mõisted vastustega

Sisujuht 16. Esimest liiki katkevuspunkt - niisugust katkevuspunkti, kus funktsioonil f on olemas ühepoolsed piirväärtused f ( a+) = lim f(x); x a+ ja f( a- ) = lim f(x); x a - nimetatakse 1. liiki katkevuspunktiks. ( hüppekoht, kõrvaldatav katkevuskoht, ................................................... 3 17. Teist liiki katkevuspunkt - arvu a nimetatakse funktsiooni y = f(x) teist liiki katkevuspunktiks, kui lim f(x); x a - on lõpmatu või ei eksisteeri ............................................ 4 20. Diferentseeruv funktsioon - kui funktsioonil y = f(x) on tuletis punktis x = x0, siis ütleme, et funktsioon on diferentseeruv punktis x0. Kui funktsioon on aga diferentseeruv mingi piirkonna igas punktis, öeldakse, et funktsioon on diferentseeruv selles piirkonnas. ..................................... 4 1. Arvuhulgad: naturaal-, täis-, ratsionaal-, reaal- ja kompleksarvud. Nende omadused. ...............6 2. Reaalarvu absoluutväärtus, absoluutväärtuse omadused. .....

Matemaatika
thumbnail
37
docx

Matemaatiline analüüs l.

Matematiline analüüs l. Jaan Jaano 1. Arvtelje mõiste. Reaalarvu absoluutväärtus. Loetleda absoluutväärtuse omadused. Reaalarvude ja lõpmatuste ümbrused. Tõkestatud hulga definitsioon. Arvtelje mõiste. Arvteljeks nimetatakse sirget, millel on valitud nullpunkt, pikkusühik ja positiivne suund. Võib väita, et igale arvtelje punktile vastab üks ja ainult üks reaalarv ja vastupidi: igale reaalarvule vastab üks ja ainult üks arvtelje punkt. Absoluutväärtuse mõiste. Reaalarvu a absoluutväärtuseks nimetatakse järgmist mittenegatiivset reaalarvu: |a| = a kui a 0 -a kui a < 0 . Reaalarvu a absoluutväärtus |a| on punkti a ja nullpunkti vahelist kaugust arvteljel. Absoluutväärtuse omadused: 1. | - a| = |a| 2. |ab| = |a| |b| 3. |a + b| |a| + |b| 4. |a - b| | |a| - |b| | Reaalarvude ja lõpmatuste ümbrused. Reaalarvu a ümbruseks nimetatakse suvalist vahemikku (a - , a + ), kus > 0 on ümbruse raadius. Reaalarvu a vasakpoolseks ümbruseks nimetatakse suva

Matemaatiline analüüs




Kommentaarid (1)

raibe001 profiilipilt
raibe001: Väga hea õppematerjal
21:46 09-01-2011



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun